A normative framework for the study of second-order sensitivity in vision.

While the contrast sensitivity approach has been successful in evaluating the processing of first-order stimuli, there is a need to develop comparable ways of assessing second-order vision. Our purpose here is to establish normative data on second-order contrast-, orientation-, and motion-modulation sensitivity in humans. We propose a unified framework, applying the quick contrast sensitivity function (qCSF) method, which was recently developed for the rapid measurement of contrast sensitivity across the full spatial-frequency range (Lesmes, Lu, Baek, & Albright, 2010), to measure both first- and second-order sensitivity functions. We first show that the qCSF methodology can be successfully adapted to different kinds of first- and second-order measurements. We provide a normative dataset for both first- and second-order sensitivity, and we show that the sensitivity to all these stimuli is equal in the two eyes. Our results confirm some strong differences between first- and second-order processing, in accordance with the classical filter-rectify-filter model. They suggest a common contrast detection mechanism but different second-order mechanisms.

[1]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[2]  Anders M. Dale,et al.  Representation of motion boundaries in retinotopic human visual cortical areas , 1997, Nature.

[3]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[4]  M. Georgeson,et al.  Sensitivity to contrast modulation: the spatial frequency dependence of second-order vision , 2003, Vision Research.

[5]  M. Leek Adaptive procedures in psychophysical research , 2001, Perception & psychophysics.

[6]  S. Klein,et al.  Measuring, estimating, and understanding the psychometric function: A commentary , 2001, Perception & psychophysics.

[7]  Luke E. Hallum,et al.  Mechanisms of selectivity for orientation-defined form in macaque visual cortex , 2012 .

[8]  A. Cowey,et al.  The Effect of Removing Superior Temporal Cortical Motion Areas in the Macaque Monkey: II. Motion Discrimination Using Random Dot Displays , 1992, The European journal of neuroscience.

[9]  J. Anthony Movshon,et al.  Neuronal Responses to Texture-Defined Form in Macaque Visual Area V2 , 2011, The Journal of Neuroscience.

[10]  Amol Gharat,et al.  Motion-defined contour processing in the early visual cortex. , 2012, Journal of neurophysiology.

[11]  Isamu Motoyoshi,et al.  Differential roles of contrast polarity reveal two streams of second-order visual processing , 2007, Vision Research.

[12]  J. Faubert,et al.  Larger effect of aging on the perception of higher-order stimuli , 2000, Vision Research.

[13]  T. Ledgeway,et al.  Sensitivity to spatial and temporal modulations of first-order and second-order motion , 2006, Vision Research.

[14]  A. Watson,et al.  Motion-contrast sensitivity: visibility of motion gradients of various spatial frequencies , 1994 .

[15]  Denis G. Pelli,et al.  ECVP '07 Abstracts , 2007, Perception.

[16]  F. Campbell,et al.  Optical quality of the human eye , 1966, The Journal of physiology.

[17]  M. Landy,et al.  Properties of second-order spatial frequency channels , 2002, Vision Research.

[18]  C. Baker,et al.  Envelope-responsive neurons in areas 17 and 18 of cat. , 1994, Journal of neurophysiology.

[19]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[20]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[21]  Annelies Baeck,et al.  Transfer of object learning across distinct visual learning paradigms. , 2010, Journal of vision.

[22]  N. Graham,et al.  Spatial frequency uncertainty effects in the detection of sinusoidal gratings , 1981, Vision Research.

[23]  N. Issa,et al.  Subcortical Representation of Non-Fourier Image Features , 2010, The Journal of Neuroscience.

[24]  C L Baker,et al.  A processing stream in mammalian visual cortex neurons for non-Fourier responses. , 1993, Science.

[25]  L. Maffei,et al.  The visual cortex as a spatial frequency analyser. , 1973, Vision research.

[26]  D. G. Green,et al.  Optical and retinal factors affecting visual resolution. , 1965, The Journal of physiology.

[27]  Wilson S. Geisler,et al.  The physical limits of grating visibility , 1987, Vision Research.

[28]  D. Regan,et al.  Visual processing of motion-defined form: selective failure in patients with parietotemporal lesions , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  C. Baker Central neural mechanisms for detecting second-order motion , 1999, Current Opinion in Neurobiology.

[30]  A. Watson,et al.  A standard model for foveal detection of spatial contrast. , 2005, Journal of vision.

[31]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[32]  ANDREW T SMITH,et al.  Separate Detection of Moving Luminance and Contrast Modulations: Fact or Artifact? , 1997, Vision Research.

[33]  Michael S Landy,et al.  Orientation selectivity of motion-boundary responses in human visual cortex. , 2010, Journal of neurophysiology.

[34]  J. Rovamo,et al.  Michelson contrast, RMS contrast and energy of various spatial stimuli at threshold , 1993, Vision Research.

[35]  R. Hess,et al.  Visual motion gradient sensitivity shows scale invariant spatial frequency and speed tuning properties , 2010, Vision Research.

[36]  Leslie G. Ungerleider,et al.  Texture segregation in the human visual cortex: A functional MRI study. , 2000, Journal of neurophysiology.

[37]  M. Landy,et al.  Orientation-selective adaptation to first- and second-order patterns in human visual cortex. , 2006, Journal of neurophysiology.

[38]  D Regan,et al.  Visual acuity and contrast sensitivity in multiple sclerosis--hidden visual loss: an auxiliary diagnostic test. , 1977, Brain : a journal of neurology.

[39]  S. Zeki,et al.  The processing of kinetic contours in the brain. , 2003, Cerebral cortex.

[40]  M. Meng,et al.  Relationship between ventral stream for object vision and dorsal stream for spatial vision: An fMRI+ERP study , 1999, Human brain mapping.

[41]  R. F. Hess,et al.  The threshold contrast sensitivity function in strabismic amblyopia: Evidence for a two type classification , 1977, Vision Research.

[42]  Yifeng Zhou,et al.  Age-related decline of contrast sensitivity for second-order stimuli: earlier onset, but slower progression, than for first-order stimuli. , 2009, Journal of vision.

[43]  R. Sekuler,et al.  Contrast sensitivity throughout adulthood , 1982, Vision Research.

[44]  G. Sperling,et al.  Measuring the spatial frequency selectivity of second-order texture mechanisms , 1995, Vision Research.

[45]  J. B. Demb,et al.  Cellular Basis for the Response to Second-Order Motion Cues in Y Retinal Ganglion Cells , 2001, Neuron.

[46]  G. Legge,et al.  Contrast Sensitivity Function as a Screening Test: A Critique , 1986, American journal of optometry and physiological optics.

[47]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[48]  Frederick A. A. Kingdom,et al.  PII: S0042-6989(98)00217-X , 1998 .

[49]  N. Prins Psychophysics: A Practical Introduction , 2009 .

[50]  G. F. Cooper,et al.  The spatial selectivity of the visual cells of the cat , 1969, The Journal of physiology.

[51]  Heidi A. Peterson,et al.  Luminance-model-based DCT quantization for color image compression , 1992, Electronic Imaging.

[52]  J. Hennig,et al.  The Processing of First- and Second-Order Motion in Human Visual Cortex Assessed by Functional Magnetic Resonance Imaging (fMRI) , 1998, The Journal of Neuroscience.

[53]  G. Orban,et al.  A motion area in human visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. Allard,et al.  Double dissociation between first- and second-order processing , 2007, Vision Research.

[55]  D. Burr,et al.  Two stages of visual processing for radial and circular motion , 1995, Nature.

[56]  Robert F. Hess,et al.  Orientation gradient detection exhibits variable coupling between first- and second-stage filtering mechanisms. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[57]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[58]  T. Ledgeway,et al.  The influence of spatial and temporal noise on the detection of first-order and second-order orientation and motion direction , 2005, Vision Research.

[59]  Zhong-Lin Lu,et al.  Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method. , 2010, Journal of vision.

[60]  Michael S. Landy,et al.  Orthogonal Distribution Analysis: A New Approach to the Study of Texture Perception , 1991 .

[61]  M. Georgeson,et al.  Sensitivity to modulations of luminance and contrast in visual white noise: separate mechanisms with similar behaviour , 1999, Vision Research.

[62]  W. Merigan Cortical area V4 is critical for certain texture discriminations, but this effect is not dependent on attention , 2000, Visual Neuroscience.

[63]  S. Dakin,et al.  Sensitivity to contrast modulation depends on carrier spatial frequency and orientation , 2000, Vision Research.

[64]  Curtis L. Baker,et al.  Texture sparseness, but not local phase structure, impairs second-order segmentation , 2013, Vision Research.

[65]  L. E. Hallum,et al.  Human primary visual cortex (V1) is selective for second-order spatial frequency. , 2011, Journal of neurophysiology.

[66]  D M Levi,et al.  Spatio-temporal interactions in anisometropic and strabismic amblyopia. , 1977, Investigative ophthalmology & visual science.

[67]  R L Woods,et al.  Spatial frequency dependent observer bias in the measurement of contrast sensitivity. , 1996, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[68]  Chang-Bing Huang,et al.  qCSF in clinical application: efficient characterization and classification of contrast sensitivity functions in amblyopia. , 2010, Investigative ophthalmology & visual science.

[69]  Michael S. Landy,et al.  Visual perception of texture , 2002 .