Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p : independence of p
暂无分享,去创建一个
H. H. Andersen | Wolfgang Soergel | Henning Haahr Andersen | W. Soergel | Jens Carsten Jantzen | J. Jantzen
[1] G. Lusztig. Quantum deformations of certain simple modules over enveloping algebras , 1988 .
[2] W. Soergel. n-Cohomology of simple highest weight modules on walls and purity , 1989 .
[3] I. Gel'fand,et al. SCHUBERT CELLS AND COHOMOLOGY OF THE SPACES G/P , 1973 .
[4] G. Lusztig. Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra , 1990 .
[5] H. H. Andersen,et al. Quantum groups at roots of ±1 , 1996 .
[6] Jurgen Fuchs,et al. Affine Lie Algebras and Quantum Groups , 1995 .
[7] Wolfgang Soergel,et al. The combinatorics of Harish-Chandra bimodules. , 1992 .
[8] O. Gabber,et al. Towards the Kazhdan-Lusztig conjecture , 1981 .
[9] Michel Demazure,et al. Invariants symétriques entiers des groupes de Weyl et torsion , 1973 .
[10] Brian Parshall,et al. Quantum Linear Groups , 1991 .
[11] S. Donkin. MODULN MIT EINEM HÖCHSTEN GEWICHT (Lecture Notes in Mathematics, 750.) , 1981 .
[12] G. Lusztig. Monodromic systems on affine flag manifolds , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[13] V. Kac,et al. Representations of quantum groups at roots of 1 , 1992 .
[14] V. Kats,et al. Irreducible representations of Lie p-algebras , 1971 .
[15] S. Kato. On the Kazhdan-Lusztig polynomials for affine Weyl groups , 1985 .
[16] Shrawan Kumar,et al. Cohomology of quantum groups at roots of unity , 1993 .
[17] J. Humphreys. Algebraic groups and modular lie algebras , 1967 .
[18] J. Jantzen. Support Varieties of Weyl Modules , 1987 .
[19] J. Jantzen. Über Darstellungen höherer Frobenius-Kerne halbeinfacher algebraischer Gruppen , 1979 .
[20] H. H. Andersen. Filtrations of cohomology modules for Chevalley groups , 1983 .
[21] C. Curtis,et al. Methods of representation theory--with applications to finite groups and orders , 1981 .
[22] J. Humphreys. Modular representations of classical Lie algebras and semisimple groups , 1971 .
[23] George Lusztig,et al. Canonical bases arising from quantized enveloping algebras , 1990 .
[24] E. Friedlander,et al. Modular representation theory of Lie algebras , 1988 .
[25] J. Jantzen. Über das Dekompositionsverhalten gewisser modularer Darstellungen halbeinfacher Gruppen und ihrer Lie-Algebren , 1977 .
[26] J. Jantzen. Darstellungen halbeinfacher Gruppen und ihrer Frobenius-Kerne. , 1980 .
[27] W. Soergel. Kategorie , perverse Garben und Moduln über den Koinvarianten zur Weylgruppe , 1990 .
[28] M. Kashiwara,et al. Characters of the Negative Level Highest-Weight Modules for Affine Lie Algebras , 1995 .
[29] E. Friedlander,et al. Deformations of Lie Algebra Representations , 1990 .
[30] Jian-pan Wang,et al. Cohomology of infinitesimal quantum groups, I , 1992 .
[31] G. Lusztig. Some problems in the representation theory of nite Cheval-ley groups , 1979 .
[32] G. Lusztig. Hecke algebras and Jantzen's generic decomposition patterns , 1980 .
[33] B Kostant,et al. The nil Hecke ring and cohomology of G/P for a Kac-Moody group G. , 1986, Proceedings of the National Academy of Sciences of the United States of America.
[34] D. Kazhdan,et al. Tensor structures arising from affine Lie algebras. III , 1993 .
[35] Nicolai Reshetikhin,et al. Quantum Groups , 1993 .
[36] R. Carter. REFLECTION GROUPS AND COXETER GROUPS (Cambridge Studies in Advanced Mathematics 29) , 1991 .
[37] N. Xi. Irreducible modules of quantized enveloping algebras at roots of 1 , 1996 .