Influences of oxygen on the magnetocaloric properties of a Fe-based amorphous alloy

[1]  Piotr Gębara,et al.  Determination of Phase Transition and Critical Behavior of the As-Cast GdGeSi-(X) Type Alloys (Where X = Ni, Nd and Pr) , 2021, Materials.

[2]  Hui Xu,et al.  Effect of Dy, Ho, and Er substitution on the magnetocaloric properties of Gd-Co-Al-Y high entropy bulk metallic glasses , 2020, Journal of Alloys and Compounds.

[3]  V. Franco,et al.  Magnetocaloric response of binary Gd-Pd and ternary Gd-(Mn,Pd) alloys , 2020 .

[4]  P. Guan,et al.  A general rule for transition metals doping on magnetic properties of Fe-based metallic glasses , 2020 .

[5]  W. Cheikhrouhou-Koubaa,et al.  Study of the magnetic and magnetocaloric properties of new perovskite-type materials: La0.6Ba0.2Sr0.2Mn1−xFexO3 , 2019, Applied Physics A.

[6]  B. Shen,et al.  Thermal, magnetic and magnetocaloric properties of FeErNbB metallic glasses with high glass-forming ability , 2019, Journal of Non-Crystalline Solids.

[7]  Lei Xie,et al.  Effect of preparation cooling rate on magnetocaloric effect of Fe80P13C7 amorphous alloy , 2019, Journal of Magnetism and Magnetic Materials.

[8]  Dierk Raabe,et al.  Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes , 2018, Nature.

[9]  Piotr Gębara,et al.  Investigation of critical behavior in the vicinity of ferromagnetic to paramagnetic phase transition in the Fe75Mo8Cu1B16 alloy , 2018, Journal of Applied Physics.

[10]  J. Z. Zhang,et al.  Fe87Zr7B4Co2 amorphous alloy with excellent magneto-caloric effect near room temperature , 2018 .

[11]  J. Olszewski,et al.  Magnetocaloric Effect in Amorphous and Partially Crystallized Fe80Zr7Cr6Nb2Cu1B4 Alloy , 2018 .

[12]  K. Prusik,et al.  Microstructure and some thermomagnetic properties of amorphous Fe-(Co)-Mn-Mo-B alloys , 2018 .

[13]  Piotr Gębara,et al.  Broadening of temperature working range in magnetocaloric La(Fe,Co,Si)13- based multicomposite , 2017 .

[14]  Anding Wang,et al.  Oxidation and refreshing behaviors of P-containing Fe-based amorphous ribbons , 2017 .

[15]  Hongxiang Li,et al.  Influences of oxygen on plastic deformation of a Fe-based bulk metallic glass , 2017 .

[16]  Hongxiang Li,et al.  Effect of metalloid elements on magnetic properties of Fe-based bulk metallic glasses , 2017 .

[17]  Xue-Feng Zhang,et al.  Stable magnetocaloric effect and refrigeration capacity in Co-doped FeCoMnZrNbB amorphous ribbons near room temperature , 2017 .

[18]  X. Bi,et al.  Hydrogenated Fe90M10 (M: Zr and Sc) amorphous alloys with enhanced room-temperature magnetocaloric effect , 2016 .

[19]  D. Shishkin,et al.  The thermomechanical stability of Fe-based amorphous ribbons exhibiting magnetocaloric effect , 2016 .

[20]  A. Inoue,et al.  Extraordinary magnetocaloric effect of Fe-based bulk glassy rods by combining fluxing treatment and J-quenching technique , 2016 .

[21]  Santanu Das,et al.  Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  Run‐Wei Li,et al.  Magnetocaloric effect in Fe–Tm–B–Nb metallic glasses near room temperature , 2015 .

[23]  Run‐Wei Li,et al.  Magnetocaloric effect of Fe-RE-B-Nb (RE = Tb, Ho or Tm) bulk metallic glasses with high glass-forming ability , 2015 .

[24]  A. Inoue,et al.  Mechanical properties and structural features of novel Fe-based bulk metallic glasses with unprecedented plasticity , 2014, Scientific Reports.

[25]  Weihua Wang,et al.  Pronounced enhancement of glass-forming ability of Fe-Si-B-P bulk metallic glass in oxygen atmosphere , 2014 .

[26]  Hongxiang Li,et al.  Preparation and characterization of quaternary magnetic Fe80-xCoxP14B6 bulk metallic glasses , 2014 .

[27]  Tao Zhang,et al.  Near room-temperature magnetocaloric effect in FeMnPBC metallic glasses with tunable Curie temperature , 2013 .

[28]  Jun Shen,et al.  Roles of hydrogenation, annealing and field in the structure and magnetic entropy change of Tb-based bulk metallic glasses , 2013 .

[29]  J. Eckert,et al.  Magnetocaloric (Fe-B)-based amorphous alloys , 2013 .

[30]  A. Ma,et al.  Soft magnetic properties in Fe84−xB10C6Cux nanocrystalline alloys , 2013 .

[31]  Kaspar Kirstein Nielsen,et al.  Materials Challenges for High Performance Magnetocaloric Refrigeration Devices , 2012 .

[32]  X. Bian,et al.  The relationship between the stability of glass-forming Fe-based liquid alloys and the metalloid-centered clusters , 2012 .

[33]  V. Franco,et al.  The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models , 2012 .

[34]  W. Wang,et al.  NMR signature of evolution of ductile-to-brittle transition in bulk metallic glasses. , 2011, Physical review letters.

[35]  Christina H. Chen,et al.  Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient , 2011, Advanced materials.

[36]  R. Ramanujan,et al.  Tunable Curie temperatures in Gd alloyed Fe-B-Cr magnetocaloric materials , 2010 .

[37]  V. Franco,et al.  Influence of Co and Ni addition on the magnetocaloric effect in Fe88−2xCoxNixZr7B4Cu1 soft magnetic amorphous alloys , 2010 .

[38]  X. Bi,et al.  The role of Zr and B in room temperature magnetic entropy change of FeZrB amorphous alloys , 2009 .

[39]  Yuan Wu,et al.  Glass-forming ability enhanced by proper additions of oxygen in a Fe-based bulk metallic glass , 2009 .

[40]  V. Franco,et al.  Magnetocaloric response of FeCrB amorphous alloys: Predicting the magnetic entropy change from the Arrott-Noakes equation of state , 2008 .

[41]  Z. Altounian,et al.  Effect of Co content on magnetic entropy change and structure of La(Fe1−xCox)11.4Si1.6 , 2003 .

[42]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[43]  H. Lassri,et al.  Magnetic exchange coupling in amorphous Fe82−xHoxB18 alloys , 2003 .

[44]  A. Inoue,et al.  Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance , 2002 .

[45]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[46]  Z. Sui,et al.  Influence of phosphorus addition on the surface tension of liquid iron and segregation of phosphorus on the surface of Fe-P alloy , 1996 .

[47]  R. O'handley Physics of ferromagnetic amorphous alloys , 1987 .

[48]  M. E. Wood,et al.  General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity , 1985 .

[49]  T. Hashimoto,et al.  Magnetic refrigeration in the temperature range from 10 K to room temperature: the ferromagnetic refrigerants , 1981 .

[50]  H. Güntherodt,et al.  New Type of d-Band-Metal Alloys: The Valence-Band Structure of the Metallic Glasses Pd-Zr and Cu-Zr , 1979 .