Measurement of individual intracellular pH and membrane potential values in living cells
暂无分享,去创建一个
It was assumed that each cell is a homogeneous suspension may have a slightly different pH and membrane potential. A wide range of pH-sensitive fluorescent dyes BCECF, SNARF, FITC, carboxyfluorescein, fluorescein and pyranine have been carefully tested for the accuracy and reliability of their pH-response inside living cells. The intracellular milieu was simulated by a series of mineral buffers with addition of proteins. The pH values have been determined from the excitation ratios 490/435 nm for BCECF, FITC, carboxyfluorescein and fluorescein, and 450/400 nm for pyranine, emission ratios 518/529 nm for BCECF and 635/590 nm for SNARF. The spectrally determined values were then compared with the pH values of buffers measured by a glass electrode. Using the data from the calibration procedure, we evaluated individual intracellular pH values of a large number of cells within one cell population. The confocal ratio fluorescence microscopy revealed pH maps from which both cytoplasmic and vacuolar pH values could be determine, flow cytometry gave enormous amount of average intracellular pH values of individual cells of a whole cell population. Each cell population exhibited significant differences in both cytoplasmic pH values among individual cells. The pH distribution of a typical cell population appeared to fit a Gaussian curve. In yeast it was a Gaussian curve with half- width values around 0.4 pH unit. The men pH values depended on the growth phase, H-ATPase activity and external pH values. The preliminary result with the new membrane potential dye tetramethylrhodamine methyl ester indicated that similarly to pH values, there is a heterogeneity in membrane potential values among cell sin one cell population. The data presented above suggest that each ell behaves as an individual with an individual set up of its metabolism. This 'fine tuning' of the metabolism result in slightly higher or lower pH or membrane potential values that can be detected by fluorescence techniques.