Electrochemical nitridation of a stainless steel for PEMFC bipolar plates

[1]  P. Delichère,et al.  The effect of nitrogen on the passivation mechanisms and electronic properties of chromium oxide layers , 2011 .

[2]  Heli Wang,et al.  Modifying a stainless steel via electrochemical nitridation , 2011 .

[3]  Young Hwan Kim,et al.  Effects of thermal oxi-nitridation on the corrosion resistance and electrical conductivity of 446M stainless steel for PEMFC bipolar plates , 2009 .

[4]  K. S. Weil,et al.  Development of a niobium clad PEM fuel cell bipolar plate material , 2007 .

[5]  Bing Yang,et al.  Growth of Cr-Nitrides on commercial Ni–Cr and Fe–Cr base alloys to protect PEMFC bipolar plates , 2007 .

[6]  John Turner,et al.  SnO2:F coated ferritic stainless steels for PEM fuel cell bipolar plates , 2007 .

[7]  Yan Wang,et al.  An investigation of the electrochemical properties of PVD TiN-coated SS410 in simulated PEM fuel cell environments , 2007 .

[8]  Hongwei Wang,et al.  Effects of reverse voltage and subzero startup on the membrane electrode assembly of a PEMFC , 2007 .

[9]  Nigel P. Brandon,et al.  Review of Materials and Characterization Methods for Polymer Electrolyte Fuel Cell Flow-Field Plates , 2007 .

[10]  C. Palacio,et al.  Chemical bonding of nitrogen in low-energy implanted chromium , 2006 .

[11]  C. M. Abreu,et al.  XPS study of passive films generated on AISI 430 ferritic stainless steel implanted with nitrogen and chromium plus nitrogen , 2006 .

[12]  Allen M. Hermann,et al.  Bipolar plates for PEM fuel cells: A review , 2005 .

[13]  Heli Wang,et al.  Investigation of a Duplex Stainless Steel as Polymer Electrolyte Membrane Fuel Cell Bipolar Plate Material , 2005 .

[14]  Karren L. More,et al.  Thermally nitrided stainless steels for polymer electrolyte membrane fuel cell bipolar plates Part 2: Beneficial modification of passive layer on AISI446 , 2004 .

[15]  John A. Turner,et al.  Ferritic stainless steels as bipolar plate material for polymer electrolyte membrane fuel cells , 2004 .

[16]  Heli Wang,et al.  Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells , 2003 .

[17]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[18]  R. Mallant,et al.  Use of stainless steel for cost competitive bipolar plates in the SPFC , 2000 .

[19]  Jingli Luo,et al.  Effects of Hydrogen on Semiconductivity of Passive Films and Corrosion Behavior of 310 Stainless Steel , 1999 .

[20]  I. Olefjord,et al.  The influence of nitrogen on the passivation of stainless steels , 1996 .

[21]  C. Clayton,et al.  Passivity of high-nitrogen stainless alloys: the role of metal oxyanions and salt films , 1995 .

[22]  W. Tsai,et al.  Electrochemical and surface studies on the passivity of nitrogen and molybdenum containing laser cladded alloys in 3.5 wt% NaCl solution , 1995 .

[23]  C. Clayton,et al.  On the question of nitrate formation by N-containing austenitic stainless steels , 1994 .

[24]  Seung‐Taek Myung,et al.  Application of Ni-free high nitrogen stainless steel for bipolar plates of proton exchange membrane fuel cells , 2009 .

[25]  P. Marcus,et al.  XPS study of the passive films formed on nitrogen-implanted austenitic stainless steels , 1992 .

[26]  C. Clayton,et al.  An XPS and Electrochemical Study of the Influence of Molybdenum and Nitrogen on the Passivity of Austenitic Stainless Steel , 1990 .