Intervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow

Abstract. We demonstrate in vivo volumetric optical microangiography at ∼200  volumes/s by the use of 1.6 MHz Fourier domain mode-locking swept source optical coherence tomography and an effective 36 kHz microelectromechanical system (MEMS) scanner. We propose an intervolume analysis strategy to contrast the dynamic blood flow signal from the static tissue background. The proposed system is demonstrated by imaging cerebral blood flow in mice in vivo. For the first time, imaging speed, sensitivity, and temporal resolution become possible for a direct four-dimensional observation of microcirculations within live body parts.

[1]  Ruikang K. Wang,et al.  Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. , 2010, Optics express.

[2]  Ruikang K. Wang,et al.  4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source. , 2015, Optics letters.

[3]  Kirill V. Larin,et al.  Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 1.5 MHz optical coherence tomography. , 2015, Optics letters.

[4]  Wolfgang Wieser,et al.  High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s. , 2014, Biomedical optics express.

[5]  K. Ohbayashi,et al.  Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s. , 2008, Optics letters.

[6]  Ruikang K. Wang,et al.  Three dimensional optical angiography. , 2007, Optics express.

[7]  R. Leitgeb,et al.  Ultrahigh-speed non-invasive widefield angiography. , 2012, Journal of biomedical optics.

[8]  Wolfgang Drexler,et al.  In situ structural and microangiographic assessment of human skin lesions with high-speed OCT , 2012, Biomedical optics express.

[9]  Changhuei Yang,et al.  Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography. , 2007, Optics express.

[10]  H. Urey,et al.  Resonant PZT MEMS Scanner for High-Resolution Displays , 2012, Journal of Microelectromechanical Systems.

[11]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[12]  M. Leahy,et al.  Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images , 2010, Journal of biophotonics.

[13]  Yingtian Pan,et al.  MEMS-based Endoscopic Optical Coherence Tomography , 2004 .

[14]  Andrew G. Glen,et al.  APPL , 2001 .

[15]  Adrian Mariampillai,et al.  Optimized speckle variance OCT imaging of microvasculature. , 2010, Optics letters.

[16]  Ruikang K. Wang,et al.  Methods and algorithms for optical coherence tomography-based angiography: a review and comparison , 2015, Journal of biomedical optics.

[17]  A. Kampik,et al.  Multi-MHz retinal OCT. , 2013, Biomedical optics express.

[18]  Chi Zhang,et al.  High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch. , 2015, Biomedical optics express.

[19]  Jörg Stypmann,et al.  Doppler Ultrasound in Mice , 2007, Echocardiography.

[20]  Ruikang K. Wang,et al.  Theory, developments and applications of optical coherence tomography , 2005 .