Classification of wind speed distributions using a mixture of Dirichlet distributions

Wind energy production is very sensitive to instantaneous wind speed fluctuations. Thus rapid variation of wind speed due to changes in the local meteorological conditions can lead to electrical power variations of the order of the nominal power output. The high variability of this renewable energy source can caused a disruptive effect on power quality and reliability, in non-interconnected island networks as in Guadeloupe (French West Indies). To palliate these difficulties, it is essential to identify and characterize the wind speed distribution over very short time intervals. This allows anticipating the eventuality of power shortage or power surge. Therefore, it is of interest to categorize wind speed fluctuations into distinct classes and to estimate the probability of a distribution to belong to a class. This paper presents a method for classifying wind speed distributions by estimating a finite mixture of Dirichlet distributions. The SAEM algorithm that we use provides a fine distinction between three wind speed distribution classes. It is a new nonparametric method for wind speed classification.

[1]  Daniel Weisser,et al.  Instantaneous wind energy penetration in isolated electricity grids: concepts and review , 2005 .

[2]  V. Karsli,et al.  An investigation on wind power potential of Nurdaǧı-Gaziantep, Turkey , 2003 .

[3]  Rajka Budin,et al.  Specific wind energy as a function of mean speed , 1992 .

[4]  J. A. Carta,et al.  A joint probability density function of wind speed and direction for wind energy analysis , 2008 .

[5]  K. P. Pandey,et al.  Analysis of wind regimes for energy estimation , 2002 .

[6]  S. M. Nasir,et al.  Wind energy estimation at Quetta , 1991 .

[7]  Wind velocity analysis for time scales smaller than 1 hour: Application to wind energy forecasting , 2005 .

[8]  A. S. Ahmed Shata,et al.  The potential of electricity generation on the east coast of Red Sea in Egypt , 2006 .

[9]  A. H. Algifri,et al.  Wind energy potential in Aden-Yemen , 1998 .

[10]  Ssu-yuan Hu,et al.  Performance evaluation of pairing between sites and wind turbines , 2007 .

[11]  T. O. Halawani,et al.  Weibull parameters for wind speed distribution in Saudi Arabia , 1994 .

[12]  J. A. Carta,et al.  Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions , 2007 .

[13]  T. Chang,et al.  Evaluation of monthly capacity factor of WECS using chronological and probabilistic wind speed data: A case study of Taiwan , 2007 .

[14]  E. Akpinar,et al.  A statistical analysis of wind speed data used in installation of wind energy conversion systems , 2005 .

[15]  Eric R. Scerri,et al.  Wind data evaluation in the Maltese Islands , 1996 .

[16]  F. C. Kaminsky Four probability densities /log-normal, gamma, Weibull, and Rayleigh/ and their application to modelling average hourly wind speed , 1977 .

[17]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[18]  J. A. Carta,et al.  A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands , 2009 .

[19]  Afif Hasan,et al.  Wind energy potential in Palestine , 1997 .

[20]  K. Sopian,et al.  The wind energy potential of Malaysia , 1995 .

[21]  Khaled S. M. Essa,et al.  Statistical Evaluation of Wind Energy at Inshas, Egypt , 2005 .

[22]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[23]  K. Tar Some statistical characteristics of monthly average wind speed at various heights , 2008 .

[24]  D. Sprevak,et al.  The estimation of the parameters of the distribution of wind speed and direction , 1980 .

[25]  Wind energy potential at Palkalainagar , 1991 .

[26]  T. Soubdhan,et al.  Classification of daily solar radiation distributions using a mixture of Dirichlet distributions , 2009 .

[27]  O. A. Jaramillo,et al.  Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case , 2004 .

[28]  Murat Gökçek,et al.  Investigation of wind characteristics and wind energy potential in Kirklareli, Turkey , 2007 .

[29]  H. Nfaoui,et al.  Wind energy potential in Morocco , 1991 .

[30]  A. B. Mayhoub,et al.  A survey on the assessment of wind energy potential in Egypt , 1997 .

[31]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[32]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[33]  Rodolfo Pallabazzer,et al.  Previsional estimation of the energy output of windgenerators , 2004 .

[34]  A. Celik A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey , 2004 .

[35]  R. Corotis,et al.  Probability models of wind velocity magnitude and persistence , 1978 .

[36]  K. Abdeladim,et al.  Wind mapping of a region in the north-east of Algeria , 1996 .

[37]  CONSIDERATIONS OF THE EFFECTS OF WINDS ON THE DRIFT OF OIL SLICKS AT SEA: STATISTICAL AND TEMPORAL ASPECTS OF WIND VELOCITY, DIRECTION AND PERSISTENCE , 1987 .

[38]  Tsang-Jung Chang,et al.  Assessment of wind characteristics and wind turbine characteristics in Taiwan , 2003 .

[39]  W. E. Bardsley Note on the Use of the Inverse Gaussian Distribution for Wind Energy Applications , 1980 .

[40]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[41]  D. K. Subramanian,et al.  Wind energy potential assessment in Uttara Kannada district of Karnataka, India , 1997 .

[42]  A. Sahin,et al.  Wind power energy potential at the northeastern region of Saudi Arabia , 1998 .

[43]  Pavlos S. Georgilakis,et al.  Technical challenges associated with the integration of wind power into power systems , 2008 .

[44]  C. R. Ranganathan,et al.  Estimation of wind power availability in Tamil Nadu , 1991 .

[45]  E. Akpinar,et al.  An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics , 2005 .

[46]  G. M. Ngala,et al.  Viability of wind energy as a power generation source in Maiduguri, Borno state, Nigeria , 2007 .

[47]  S. Parsa,et al.  Wind power statistics and an evaluation of wind energy density , 1995 .

[48]  Julio Usaola Probabilistic load flow with wind production uncertainty using cumulants and Cornish–Fisher expansion , 2009 .

[49]  Chandrabhan Sharma,et al.  Wind Speed Distributions: A New Catalogue of Defined Models , 2001 .

[50]  A. Ilinca,et al.  WIND POTENTIAL ASSESSMENT OF QUEBEC PROVINCE , 2003 .

[51]  A. Miraoui,et al.  Wind speed spatial estimation for energy planning in Sicily: Introduction and statistical analysis , 2008 .

[52]  H. Hartley Maximum Likelihood Estimation from Incomplete Data , 1958 .

[53]  M. Escobar Estimating Normal Means with a Dirichlet Process Prior , 1994 .

[54]  A. Sahin,et al.  A statistical analysis of wind energy potential at the eastern region of Saudi Arabia , 1999 .

[55]  F. Jowder,et al.  Weibull and Rayleigh Distribution Functions of Wind Speeds in Kingdom of Bahrain , 2006 .

[56]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[57]  E. Akpinar,et al.  Determination of the wind energy potential for Maden-Elazig, Turkey , 2004 .