Persistence length and stochastic fragmentation of supramolecular nanotubes under mechanical force

Cyclic peptide nanotubes (CPNs) exhibit impressive structural, mechanical and chemical properties in resemblance to beta-sheet proteins found in silks and amyloids, and show potential as supramolecular nanotubes that can be utilized to generate novel nanocomposites and nanoporous thin films. Quantifying the persistence length and thermomechanical fragmentation of CPNs is of great importance for establishing a theoretical basis of how to generate rectilinear nanostructures with controlled aspect ratio and rigidity. However, factors governing the elasticity and dynamical breaking of these supramolecular nanostructures remain to be fully understood. Here we present a statistical analysis of the Young's modulus and persistence length of CPNs using fully-atomistic molecular dynamic simulations in explicit solvent. We show that the measured properties exhibit a dependence on the magnitude of the shear force applied, and extrapolation to the quasi-static deformation case yields 0.46 μm for the persistence length and 7.8 GPa for the Young's modulus, in agreement with our experimental observations from TEM images. We establish a theoretical model for the spatial and temporal distribution of stochastic fracture, which we use to explain the simulation-based observations of spontaneous fragmentation under an applied shear force. Our methodology, blending theory, simulation and experiments provide a framework that can be utilized to investigate the mechanical behavior of self-assembling protein materials, paving the way for their design towards biological and industrial applications.

[1]  S. Keten,et al.  ATOMISTIC MODELING AND MECHANICS OF SELF-ASSEMBLED ORGANIC NANOTUBES , 2011 .

[2]  S. Matile,et al.  Dendritic folate rosettes as ion channels in lipid bilayers. , 2006, Journal of the American Chemical Society.

[3]  Mark A. Lantz,et al.  Stretching the α-helix: a direct measure of the hydrogen-bond energy of a single-peptide molecule , 1999 .

[4]  Michele Vendruscolo,et al.  Role of Intermolecular Forces in Defining Material Properties of Protein Nanofibrils , 2007, Science.

[5]  Evan Evans,et al.  Chemically distinct transition states govern rapid dissociation of single L-selectin bonds under force , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[7]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[8]  Markus J Buehler,et al.  Deformation and failure of protein materials in physiologically extreme conditions and disease. , 2009, Nature materials.

[9]  Janet E. Jones On the determination of molecular fields. —II. From the equation of state of a gas , 1924 .

[10]  M. Ghadiri,et al.  Self‐assembled nanoscale tubular ensembles , 1995 .

[11]  Zhiping Xu,et al.  Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Β-sheet Crystals in Silk , 2010 .

[12]  R. Lavery,et al.  DNA: An Extensible Molecule , 1996, Science.

[13]  Hongbin Li,et al.  The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Sinan Keten,et al.  Multiscale modeling of elasticity and fracture in organic nanotubes , 2014 .

[15]  K. Schulten,et al.  Single-Molecule Experiments in Vitro and in Silico , 2007, Science.

[16]  Roger D. Kamm,et al.  Cytoskeletal mechanics : models and measurements , 2006 .

[17]  S. Stupp,et al.  Tuning supramolecular rigidity of peptide fibers through molecular structure. , 2010, Journal of the American Chemical Society.

[18]  M. Buehler,et al.  Large deformation and fracture mechanics of a beta-helical protein nanotube: Atomistic and continuum modeling , 2008 .

[19]  Linda S. Schadler,et al.  On the tensile strength distribution of multiwalled carbon nanotubes , 2005 .

[20]  M. Buehler,et al.  Nanomechanical Characterization of the Triple β-Helix Domain in the Cell Puncture Needle of Bacteriophage T4 Virus , 2009 .

[21]  Zhiping Xu,et al.  Mechanical energy transfer and dissipation in fibrous beta-sheet-rich proteins. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  C. Bustamante,et al.  Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules , 1996, Science.

[23]  Charles R. Martin,et al.  Nanotubule-Based Molecular-Filtration Membranes , 1997 .

[24]  Markus J. Buehler,et al.  Nanostructure and molecular mechanics of spider dragline silk protein assemblies , 2010, Journal of The Royal Society Interface.

[25]  Markus J Buehler,et al.  Nanomechanics of functional and pathological amyloid materials. , 2011, Nature nanotechnology.

[26]  Karen Willcox,et al.  Kinetics and kinematics for translational motions in microgravity during parabolic flight. , 2009, Aviation, space, and environmental medicine.

[27]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[28]  Juan R. Granja,et al.  Self-assembling organic nanotubes based on a cyclic peptide architecture , 1993, Nature.

[29]  J. Schellman,et al.  Flexibility of DNA , 1974, Biopolymers.

[30]  Markus J Buehler,et al.  Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[32]  M. R. Imam,et al.  Self-assembly of dendritic crowns into chiral supramolecular spheres. , 2009, Journal of the American Chemical Society.

[33]  Juan R. Granja,et al.  Self-assembling organic nanotubes based on a cyclic peptide architecture , 1994, Nature.

[34]  Jeffery T. Davis,et al.  Supramolecular Architectures Generated by Self-Assembly of Guanosine Derivatives , 2007 .

[35]  R. Mahajan,et al.  Pushing the limits on possibilities for large scale gas separation: which strategies? , 2000 .

[36]  V. Percec,et al.  Principles of self-assembly of helical pores from dendritic dipeptides. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Giovanni Dietler,et al.  Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. , 2012, Nanoscale.

[38]  R. Baker Future directions of membrane gas separation technology , 2002 .

[39]  Markus J Buehler,et al.  Alpha-helical protein domains unify strength and robustness through hierarchical nanostructures , 2009, Nanotechnology.

[40]  S. Dai,et al.  Porous graphene as the ultimate membrane for gas separation. , 2009, Nano letters.

[41]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[42]  Martyna Remarks on "Constant-temperature molecular dynamics with momentum conservation" , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  A. N. Semenov,et al.  Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Markus J. Buehler,et al.  Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein domains , 2007, Proceedings of the National Academy of Sciences.

[45]  A. Hoff,et al.  Hysteresis of denaturation of DNA in the melting range , 1972, Biopolymers.

[46]  J. A. Diaz,et al.  Thermo-mechanical stability and strength of peptide nanostructures from molecular dynamics: self-assembled cyclic peptide nanotubes , 2010, Nanotechnology.

[47]  Michelle D. Wang,et al.  Estimating the persistence length of a worm-like chain molecule from force-extension measurements. , 1999, Biophysical journal.

[48]  B. Helms,et al.  Subnanometer porous thin films by the co-assembly of nanotube subunits and block copolymers. , 2011, ACS nano.

[49]  A. Balazs,et al.  Harnessing labile bonds between nanogel particles to create self-healing materials. , 2009, ACS nano.

[50]  Jacob N. Israelachvili,et al.  Intermolecular and surface forces : with applications to colloidal and biological systems , 1985 .

[51]  G. I. Bell Models for the specific adhesion of cells to cells. , 1978, Science.

[52]  Albert S. Benight,et al.  Thermal denaturation of DNA molecules: A comparison of theory with experiment , 1985 .

[53]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .

[54]  Ting Xu,et al.  Processable cyclic peptide nanotubes with tunable interiors. , 2011, Journal of the American Chemical Society.

[55]  Markus J. Buehler,et al.  Atomistic model of the spider silk nanostructure , 2010 .

[56]  L. Krishtalik,et al.  Proteins as specific polar media for charge transfer processes , 2012 .

[57]  Markus J Buehler,et al.  Nanomechanical properties of vimentin intermediate filament dimers , 2009, Nanotechnology.

[58]  Roger D. Kamm,et al.  Cytoskeletal Mechanics: Models and Measurements in Cell Mechanics , 2006 .

[59]  C. Jeffrey Brinker,et al.  Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. , 2009, Journal of the American Chemical Society.

[60]  Russell C. Hibbeler,et al.  Structural Analysis , 1994 .

[61]  J. Georgiadis,et al.  Science and technology for water purification in the coming decades , 2008, Nature.

[62]  R. Noble,et al.  Supported Lyotropic Liquid‐Crystal Polymer Membranes: Promising Materials for Molecular‐Size‐Selective Aqueous Nanofiltration , 2005 .

[63]  M. Buehler,et al.  Triangular core as a universal strategy for stiff nanostructures in biology and biologically inspired materials , 2011 .

[64]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[65]  Berend Smit,et al.  Carbon Dioxide Capture: Prospects for New Materials , 2010 .

[66]  Markus J Buehler,et al.  Atomistic Simulation of Nanomechanical Properties of Alzheimer's Ab(1–40) Amyloid Fibrils under Compressive and Tensile Loading , 2022 .

[67]  S. D. Hudson,et al.  Self-assembly of amphiphilic dendritic dipeptides into helical pores , 2004, Nature.

[68]  Maarten F. M. Engel,et al.  Morphology and persistence length of amyloid fibrils are correlated to peptide molecular structure. , 2011, Journal of the American Chemical Society.

[69]  Christopher M Dobson,et al.  Characterization of the nanoscale properties of individual amyloid fibrils , 2006, Proceedings of the National Academy of Sciences.