Thermal properties of chalcogenide glasses

Abstract: Thermal analysis techniques provide powerful tools for both the fundamental understanding and practical applications of chalcogenide glasses. Differential scanning calorimetry, thermogravimetric, and thermomechanical analysis all provide insight not only into those properties of chalcogenide glasses which are critical for hot-forming applications, such as precision molding or fiber drawing, but also into the atomic-scale structural units that give rise to this material behavior. Similarly, a clear understanding of the viscosity–temperature relationship in chalcogenides is necessary for glass processing, from melting to fabrication, but also gives deep insight into fundamental structural differences between sulfide, selenide, and telluride glasses.

[1]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[2]  Ayman F. Abouraddy,et al.  Metal–insulator–semiconductor optoelectronic fibres , 2004, Nature.

[3]  Pablo G. Debenedetti,et al.  Supercooled liquids and the glass transition , 2001, Nature.

[4]  Guillaume Guery INFLUENCE OF ISO-STRUCTURAL SUBSTITUTIONS ON PROPERTIES OF Ge(As,Sb)(S,Se) GLASSES , 2010 .

[5]  Cai,et al.  Floppy modes in network glasses. , 1989, Physical review. B, Condensed matter.

[6]  The temperature-dependent spectral properties of filter substrate materials in the far-infrared (6–40 μm) , 2004 .

[7]  Itaru Yokohama,et al.  Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre , 1996 .

[8]  J. H. Gibbs,et al.  Nature of the Glass Transition and the Glassy State , 1958 .

[9]  J. David Musgraves,et al.  Composition dependence of the viscosity and other physical properties in the arsenic selenide glass system , 2011 .

[10]  M. Fontana,et al.  Crystallization process on amorphous GeTeSb samples near to eutectic point Ge15Te85 , 2009 .

[11]  M. Couzi,et al.  Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70- xSex , 2006 .

[12]  J. C. Phillips,et al.  Constraint theory, vector percolation and glass formation , 1985 .

[13]  Johann Troles,et al.  Recent advances in chalcogenide glasses , 2004 .

[14]  Aravinda Kar,et al.  Temperature-dependent refractive index of semiconductors , 2008 .

[15]  Kathleen Richardson,et al.  Final Shape of Precision Molded Optics: Part I—Computational Approach, Material Definitions and the Effect of Lens Shape , 2012 .

[16]  John C. Mauro,et al.  Viscosity of glass-forming liquids , 2009, Proceedings of the National Academy of Sciences.

[17]  Punit Boolchand,et al.  Rigidity transitions in binary Ge–Se glasses and the intermediate phase , 2001 .

[18]  M. Popescu DISORDERED CHALCOGENIDE OPTOELECTRONIC MATERIALS: PHENOMENA AND APPLICATIONS , 2005 .

[19]  On the glass transition temperature in covalent glasses , 1997, cond-mat/9809245.

[20]  Kathleen Richardson,et al.  Final Shape of Precision Molded Optics: Part II—Validation and Sensitivity to Material Properties and Process Parameters , 2012 .

[21]  A. Varshneya,et al.  Gibbs-DiMarzio equation to describe the glass transition temperature trends in multicomponent chalcogenide glasses , 1991 .

[22]  David J. Richardson,et al.  Chalcogenide holey fibres , 2000 .

[23]  L. Brilland,et al.  Microstructured chalcogenide optical fibers from As(2)S(3) glass: towards new IR broadband sources. , 2010, Optics express.

[24]  Jasbinder S. Sanghera,et al.  Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers. , 2010, Optics express.

[25]  S. Nagel,et al.  Supercooled Liquids and Glasses , 1996 .

[26]  Angela B. Seddon,et al.  Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers , 2008 .

[27]  Laurent Brilland,et al.  Fabrication of complex structures of Holey Fibers in Chalcogenide glass. , 2006, Optics express.

[28]  Jasbinder S. Sanghera,et al.  Large Raman gain and nonlinear phase shifts in high-purity As 2 Se 3 chalcogenide fibers , 2004 .

[29]  J. Shephard,et al.  Single-mode mid-IR guidance in a hollow-core photonic crystal fiber. , 2005, Optics express.

[30]  G. Biroli,et al.  Theoretical perspective on the glass transition and amorphous materials , 2010, 1011.2578.

[31]  J D Joannopoulos,et al.  Multimaterial piezoelectric fibres. , 2010, Nature materials.

[32]  D. Werner,et al.  An infrared invisibility cloak composed of glass , 2010 .

[33]  Zheng Wang,et al.  Fiber Field‐Effect Device Via In Situ Channel Crystallization , 2010, Advanced materials.

[34]  A. Sokolov,et al.  Correlation of fragility of supercooled liquids with elastic properties of glasses. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Keiji Tanaka Photoinduced fluidity in chalcogenide glasses , 2002 .

[36]  S. Kushwaha,et al.  Specific heat studies in a-Se and a-Se90M10 (M = In, Sb, Te) alloys , 2009 .

[37]  F. Sciortino,et al.  Inherent Structure Entropy of Supercooled Liquids , 1999, cond-mat/9906081.

[38]  Ulrich Fotheringham,et al.  Thermal and Structural Property Characterization of Commercially Moldable Glasses , 2010 .

[39]  Hye-Jeong Kim,et al.  Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications. , 2010, Applied optics.

[40]  Ofer Shapira,et al.  Large-scale optical-field measurements with geometric fibre constructs , 2006, Nature materials.

[41]  J. H. Gibbs,et al.  Glass temperature of copolymers , 1959 .

[42]  J. Mangin,et al.  Thermal expansion, normalized thermo-optic coefficients, and condition for second harmonic generation of a Nd:YAG laser with wide temperature bandwidth in RbTiOPO 4 , 2011 .

[43]  O. Shapira,et al.  Towards multimaterial multifunctional fibres that see, hear, sense and communicate. , 2007, Nature materials.

[44]  A. Varshneya Fundamentals of Inorganic Glasses , 1993 .

[45]  Donald J. Jacobs,et al.  Self-organization in network glasses , 2000 .

[46]  M D Pelusi,et al.  Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration. , 2007, Optics express.

[47]  Daniel G. Georgiev,et al.  DISCOVERY OF THE INTERMEDIATE PHASE IN CHALCOGENIDE GLASSES , 2001 .

[48]  Jacques Lucas,et al.  A Family of Far‐Infrared‐Transmitting Glasses in the Ga–Ge–Te System for Space Applications , 2006 .

[49]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[50]  Steven G. Johnson,et al.  Dispersion tailoring and compensation by modal interactions in OmniGuide fibers. , 2003, Optics express.

[51]  G. Fulcher,et al.  ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES , 1925 .

[52]  A. Fasano,et al.  Asymptotic equations for the terminal phase of glass fiber drawing and their analysis , 2010 .

[53]  Takashi Yamagishi,et al.  Recent advances and trends in chalcogenide glass fiber technology: a review , 1992 .