Visual Detection of Structural Changes in Time-Varying Graphs Using Persistent Homology

Topological data analysis is an emerging area in exploratory data analysis and data mining. Its main tool, persistent homology, has become a popular technique to study the structure of complex, high-dimensional data. In this paper, we propose a novel method using persistent homology to quantify structural changes in time-varying graphs. Specifically, we transform each instance of the time-varying graph into a metric space, extract topological features using persistent homology, and compare those features over time. We provide a visualization that assists in time-varying graph exploration and helps to identify patterns of behavior within the data. To validate our approach, we conduct several case studies on real-world datasets and show how our method can find cyclic patterns, deviations from those patterns, and one-time events in time-varying graphs. We also examine whether a persistence-based similarity measure satisfies a set of well-established, desirable properties for graph metrics.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[3]  Gary Chartrand,et al.  Edge rotations and distance between graphs , 1985 .

[4]  Emden R. Gansner,et al.  A Technique for Drawing Directed Graphs , 1993, IEEE Trans. Software Eng..

[5]  Ioannis G. Tollis,et al.  Graph Drawing , 1994, Lecture Notes in Computer Science.

[6]  D. Cvetkovic,et al.  Spectra of graphs : theory and application , 1995 .

[7]  Kozo Sugiyama,et al.  Layout Adjustment and the Mental Map , 1995, J. Vis. Lang. Comput..

[8]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[9]  David Harel,et al.  ACE: a fast multiscale eigenvectors computation for drawing huge graphs , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[10]  Michael Baur,et al.  Network Comparison , 2004, Network Analysis.

[11]  Yehuda Koren,et al.  Graph Drawing by Stress Majorization , 2004, GD.

[12]  S. V. N. Vishwanathan,et al.  Graph kernels , 2007 .

[13]  François Fouss,et al.  Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation , 2007, IEEE Transactions on Knowledge and Data Engineering.

[14]  Christos Faloutsos,et al.  Graph evolution: Densification and shrinking diameters , 2006, TKDD.

[15]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[16]  Andreas Noack,et al.  Energy Models for Graph Clustering , 2007, J. Graph Algorithms Appl..

[17]  Mathieu Bastian,et al.  Gephi: An Open Source Software for Exploring and Manipulating Networks , 2009, ICWSM.

[18]  Vin de Silva,et al.  Persistent Cohomology and Circular Coordinates , 2009, SCG '09.

[19]  Michael Burch,et al.  Visualizing the Evolution of Compound Digraphs with TimeArcTrees , 2009, Comput. Graph. Forum.

[20]  Jarke J. van Wijk,et al.  Force‐Directed Edge Bundling for Graph Visualization , 2009, Comput. Graph. Forum.

[21]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[22]  Hector Garcia-Molina,et al.  Web graph similarity for anomaly detection , 2010, Journal of Internet Services and Applications.

[23]  Ben Shneiderman,et al.  Analyzing Social Media Networks with NodeXL: Insights from a Connected World , 2010 .

[24]  Afra Zomorodian,et al.  The tidy set: a minimal simplicial set for computing homology of clique complexes , 2010, SCG.

[25]  Yifan Hu,et al.  Multilevel agglomerative edge bundling for visualizing large graphs , 2011, 2011 IEEE Pacific Visualization Symposium.

[26]  Jeffrey Heer,et al.  Divided Edge Bundling for Directional Network Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[27]  Bülent Yener,et al.  Graph Classification via Topological and Label Attributes , 2011 .

[28]  Arjan Kuijper,et al.  Visual Analysis of Large Graphs: State‐of‐the‐Art and Future Research Challenges , 2011, Eurographics.

[29]  Valerio Pascucci,et al.  Branching and Circular Features in High Dimensional Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[30]  Yifan Hu,et al.  Drawing Large Graphs by Low‐Rank Stress Majorization , 2012, Comput. Graph. Forum.

[31]  J. Geelen ON HOW TO DRAW A GRAPH , 2012 .

[32]  Yuan Yao,et al.  The Landscape of Complex Networks , 2012, ArXiv.

[33]  W. Marsden I and J , 2012 .

[34]  Jeffrey Heer,et al.  GraphPrism: compact visualization of network structure , 2012, AVI.

[35]  Yuri Dabaghian,et al.  A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology , 2012, PLoS Comput. Biol..

[36]  Niklas Elmqvist,et al.  Exploring the design space of composite visualization , 2012, 2012 IEEE Pacific Visualization Symposium.

[37]  Jarke J. van Wijk,et al.  Compressed Adjacency Matrices: Untangling Gene Regulatory Networks , 2012, IEEE Transactions on Visualization and Computer Graphics.

[38]  V. Larivière,et al.  Design and Update of a Classification System: The UCSD Map of Science , 2012, PloS one.

[39]  Benjamin Schmidt,et al.  A Matrix-Based Visualization for Exploring Dynamic Compound Digraphs , 2013, 2013 17th International Conference on Information Visualisation.

[40]  Francesco Vaccarino,et al.  Decimation of Fast States and Weak Nodes: Topological Variation via Persistent Homology , 2013 .

[41]  Danai Koutra,et al.  DELTACON: A Principled Massive-Graph Similarity Function , 2013, SDM.

[42]  C. J. Carstens,et al.  Persistent Homology of Collaboration Networks , 2013 .

[43]  Kim Marriott,et al.  Edge Compression Techniques for Visualization of Dense Directed Graphs , 2013, IEEE Transactions on Visualization and Computer Graphics.

[44]  Gunnar E. Carlsson,et al.  Topological pattern recognition for point cloud data* , 2014, Acta Numerica.

[45]  Thanos Gentimis,et al.  Modeling Collaborations with Persistent Homology , 2014, ArXiv.

[46]  Alain Barrat,et al.  Contact Patterns among High School Students , 2014, PloS one.

[47]  Michael Burch,et al.  The State of the Art in Visualizing Dynamic Graphs , 2014, EuroVis.

[48]  László Babai,et al.  Graph isomorphism in quasipolynomial time [extended abstract] , 2015, STOC.

[49]  Carey E. Priebe,et al.  Shuffled Graph Classification: Theory and Connectome Applications , 2011, Journal of Classification.

[50]  Victor Solo,et al.  Brain activity: Conditional dissimilarity and persistent homology , 2015, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[51]  Jarke J. van Wijk,et al.  Reducing Snapshots to Points: A Visual Analytics Approach to Dynamic Network Exploration , 2016, IEEE Transactions on Visualization and Computer Graphics.

[52]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[53]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .