Greengenes2 unifies microbial data in a single reference tree.

[1]  S. Mirarab,et al.  Generation of accurate, expandable phylogenomic trees with uDance. , 2023, Nature biotechnology.

[2]  Y. Vázquez-Baeza,et al.  Determination of Effect Sizes for Power Analysis for Microbiome Studies Using Large Microbiome Databases , 2023, Genes.

[3]  Se Jin Song,et al.  Standardized multi-omics of Earth’s microbiomes reveals microbial and metabolite diversity , 2022, Nature Microbiology.

[4]  I. Sfiligoi,et al.  Optimizing UniFrac with OpenACC Yields Greater Than One Thousand Times Speed Increase , 2022, mSystems.

[5]  Austin D. Swafford,et al.  Phylogeny-Aware Analysis of Metagenome Community Ecology Based on Matched Reference Genomes while Bypassing Taxonomy , 2022, mSystems.

[6]  S. Mirarab,et al.  Fast and accurate distance‐based phylogenetic placement using divide and conquer , 2021, Molecular ecology resources.

[7]  Donovan H. Parks,et al.  GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy , 2021, Nucleic Acids Res..

[8]  R. Amann,et al.  Release LTP_12_2020, featuring a new ARB alignment and improved 16S rRNA tree for prokaryotic type strains. , 2021, Systematic and applied microbiology.

[9]  V. Salomaa,et al.  Taxonomic signatures of cause-specific mortality risk in human gut microbiome , 2021, Nature Communications.

[10]  Donovan H. Parks,et al.  Prokaryotic taxonomy and nomenclature in the age of big sequence data , 2021, The ISME Journal.

[11]  R. Knight,et al.  High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing , 2021, Nature Methods.

[12]  Francesco Asnicar,et al.  Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea , 2019, Nature Communications.

[13]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[14]  William A. Walters,et al.  Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 , 2019, Nature Biotechnology.

[15]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[16]  Mingxun Wang,et al.  Qiita: rapid, web-enabled microbiome meta-analysis , 2018, Nature Methods.

[17]  Benjamin D. Kaehler,et al.  Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin , 2018, Microbiome.

[18]  C. Huttenhower,et al.  Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium , 2017, Nature Biotechnology.

[19]  T. Warnow,et al.  Ultra-large alignments using phylogeny-aware profiles , 2015, Genome Biology.

[20]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[21]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[22]  Frederick Albert Matsen IV,et al.  A Format for Phylogenetic Placements , 2012, PloS one.

[23]  Eric P. Nawrocki,et al.  An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea , 2011, The ISME Journal.

[24]  J. T. Curtis,et al.  An Ordination of the Upland Forest Communities of Southern Wisconsin , 1957 .

[25]  Se Jin Song,et al.  LSU LSU A communal catalogue reveals Earth's multiscale microbial A communal catalogue reveals Earth's multiscale microbial diversity diversity , 2021 .