The inner structure of ΛCDM haloes – I. A numerical convergence study

We present a comprehensive set of convergence tests which explore the role of various numerical parameters on the equilibrium structure of a simulated dark matter halo. We report results obtained with two independent, state-of-the-art, multi-stepping, parallel N–body codes: PKDGRAV and GADGET. We find that convergent mass profiles can be obtained for suitable choices of the gravitational softening, timestep, force accuracy, initial redshift, and particle number. For softenings chosen so that particle discreteness effects are negligible, convergence in the circular velocity is obtained at radii where the following conditions are satisfied: (i) the timestep is much shorter than the local orbital timescale; (ii) accelerations do not exceed a characteristic acceleration imprinted by the gravitational softening; and (iii) enough particles are enclosed so that the collisional relaxation timescale is longer than the age of the universe. Convergence also requires sufficiently high initial redshift and accurate force computations. Poor spatial, time, or force resolution leads generally to systems with artificially low central density, but may also result in the formation of artificially dense central cusps. We have explored several adaptive time-stepping choices and obtained best results when individual timesteps are chosen according to the local acceleration and the gravitational softening (�ti / (ǫ/ai) 1/2 ), although further experimentation may yield better and more efficient criteria. The most stringent requirement for c is typically that imposed on the particle number by the collisional relaxation criterion, which implies that in order to estimate accurate circular velocities at radii where the density contrast may reach � 10 6 , the region must enclose of order 3000 particles (or more than a few

[1]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .

[2]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[3]  S. White Further simulations of merging galaxies , 1979 .

[4]  P. Goldreich,et al.  Self-similar gravitational collapse in an expanding universe , 1984 .

[5]  G. Efstathiou,et al.  Cold dark matter, the structure of galactic haloes and the origin of the Hubble sequence , 1985, Nature.

[6]  Y. Hoffman,et al.  Local density maxima - Progenitors of structure , 1985 .

[7]  J. Brackbill,et al.  Multiple time scales , 1985 .

[8]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[9]  G. Efstathiou,et al.  Numerical techniques for large cosmological N-body simulations , 1985 .

[10]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[11]  W. H. Zurek,et al.  Primordial density fluctuations and the structure of galactic haloes , 1986, Nature.

[12]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[13]  J. Richard Gott,et al.  A quantitative approach to the topology of large-scale structure , 1987 .

[14]  G. Efstathiou,et al.  The formation of dark halos in a universe dominated by cold dark matter , 1988 .

[15]  David H. Porter,et al.  A tree code with logarithmic reduction of force terms, hierarchical regularization of all variables, and explicit accuracy controls , 1989 .

[16]  L. Hernquist,et al.  TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .

[17]  A. Hamilton,et al.  Reconstructing the primordial spectrum of fluctuations of the universe from the observed nonlinear clustering of galaxies , 1991 .

[18]  J. M. Gelb,et al.  Cosmological N‐Body Simulations , 1991 .

[19]  John Dubinski,et al.  The structure of cold dark matter halos , 1991 .

[20]  J. R. Bond,et al.  Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .

[21]  F. Bouchet,et al.  Application of the Ewald method to cosmological N-body simulations , 1991 .

[22]  S. White,et al.  Models for Galaxy halos in an open universe , 1992 .

[23]  Simon D. M. White,et al.  Hierarchical galaxy formation : overmerging and the formation of an X-ray cluster , 1993 .

[24]  S. White,et al.  Simulations of dissipative galaxy formation in hierarchically clustering universes – I: Tests of the code , 1993 .

[25]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation , 1993 .

[26]  Michael S. Warren,et al.  Skeletons from the treecode closet , 1994 .

[27]  S. White,et al.  Simulations of dissipative galaxy formation in hierarchically clustering universes – II. Dynamics of the baryonic component in galactic haloes , 1994 .

[28]  OBSERVATIONAL AND THEORETICAL CONSTRAINTS ON SINGULAR DARK MATTER HALOS , 1994, astro-ph/9402004.

[29]  The cosmological dependence of cluster density profiles , 1994, astro-ph/9404030.

[30]  A. Evrard,et al.  Two-Fluid Simulations of Galaxy Formation , 1994 .

[31]  B. Moore Evidence against dissipation-less dark matter from observations of galaxy haloes , 1994, Nature.

[32]  Formation and Evolution of Galaxies: Les Houches Lectures , 1994, astro-ph/9410043.

[33]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[34]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[35]  S. White Formation and Evolution of Galaxies , 1996 .

[36]  S. Cole,et al.  The structure of dark matter haloes in hierarchical clustering models , 1995, astro-ph/9510147.

[37]  S. J. Dodds,et al.  Non-linear evolution of cosmological power spectra , 1996 .

[38]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[39]  Toshiyuki Fukushige,et al.  On the Origin of Cusps in Dark Matter Halos , 1996, astro-ph/9610005.

[40]  Ue-Li Pen,et al.  Generating Cosmological Gaussian Random Fields , 1997, astro-ph/9709261.

[41]  G. Lake,et al.  Resolving the Structure of Cold Dark Matter Halos , 1997, astro-ph/9709051.

[42]  G. Lake,et al.  Dark matter haloes within clusters , 1998, astro-ph/9801192.

[43]  Y. Jing,et al.  Accurate Fitting Formula for the Two-Point Correlation Function of Dark Matter Halos , 1998, astro-ph/9805202.

[44]  P. R. Wilson,et al.  The Internal Solar Rotation Rate Inferred from Combined GONG and LOWL Data , 1998 .

[45]  H. D. Di Rocco,et al.  Dielectronic Recombination of Mg II in Stellar Envelopes , 1998 .

[46]  M. Weinberg Fluctuations in finite-N equilibrium stellar systems , 1997, astro-ph/9707206.

[47]  The Cores of dark matter dominated galaxies: Theory versus observations , 1997, astro-ph/9708176.

[48]  M. Steinmetz,et al.  How Universal Are the Density Profiles of Dark Halos? , 1998, astro-ph/9803117.

[49]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999 .

[50]  George Lake,et al.  Cold collapse and the core catastrophe , 1999 .

[51]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[52]  R. Swaters,et al.  Dwarf galaxy rotation curves and the core problem of dark matter haloes , 2000, astro-ph/0006048.

[53]  G. Lake,et al.  Density Profiles and Substructure of Dark Matter Halos: Converging Results at Ultra-High Numerical Resolution , 1999, astro-ph/9910166.

[54]  Alexander Knebe,et al.  On the effects of resolution in dissipationless cosmological simulations , 2000 .

[55]  The Density Profiles of the Dark Matter Halo Are Not Universal. , 1999, The Astrophysical journal.

[56]  J. Hibbard,et al.  Gas and Galaxy Evolution , 2001 .

[57]  Resolving the Structure of Cold Dark Matter Halos , 2000, astro-ph/0006343.

[58]  V. Rubin,et al.  Mass Density Profiles of Low Surface Brightness Galaxies , 2001, astro-ph/0103102.

[59]  Structure of Dark Matter Halos From Hierarchical Clustering: II. Universality and Self-Similarity in Cluster-Sized Halos , 2000, astro-ph/0108014.

[60]  The Phase - space density profiles of cold dark matter halos , 2001, astro-ph/0104002.

[61]  M. Steinmetz,et al.  The Power Spectrum Dependence of Dark Matter Halo Concentrations , 2000, astro-ph/0012337.

[62]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.