Ethology of morphogenesis reveals the design principles of cnidarian size and shape development

During development, organisms interact with their natural habitats while undergoing morphological changes, yet it remains unclear whether the interplay between developing systems and their environments impacts animal morphogenesis. Here, we use the cnidarian Nematostella vectensis as a developmental model to uncover a mechanistic link between organism size, shape and behavior. Using quantitative live imaging, including extensive behavioral profiling, combined with molecular and biophysical experiments, we demonstrate that the muscular hydraulic machinery that controls body movement directly drives larva-polyp morphogenesis. Unexpectedly, size and shape development are differentially controlled by antagonistic muscles. A simple theoretical model shows how a combination of slow-priming and fast-pumping pressures generated by muscular hydraulics acts as a global mechanical regulator that coordinates tissue remodeling. Altogether, our findings illuminate how dynamic behavioral modes in the environment can be harnessed to drive morphogenetic trajectories, establishing ethology as a critical component of organismal morphogenesis – termed ethology of morphogenesis.

[1]  A. Tanay,et al.  A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity , 2021, Cell.

[2]  C. Collinet,et al.  Programmed and self-organized flow of information during morphogenesis , 2021, Nature Reviews Molecular Cell Biology.

[3]  M. Prakash,et al.  Motility-induced fracture reveals a ductile-to-brittle crossover in a simple animal’s epithelia , 2021, Nature Physics.

[4]  M. Kosloff,et al.  Ectopic activation of GABAB receptors inhibits neurogenesis and metamorphosis in the cnidarian Nematostella vectensis , 2020, Nature Ecology & Evolution.

[5]  Romain Fernandez,et al.  Fijiyama: a registration tool for 3D multimodal time-lapse imaging , 2020, Bioinform..

[6]  S. McKinney,et al.  Hedgehog signaling is required for endomesodermal patterning and germ cell development in the sea anemone Nematostella vectensis , 2020, eLife.

[7]  G. Richards,et al.  Muscle cell type diversification facilitated by extensive gene duplications , 2020, bioRxiv.

[8]  Christoph Schmal,et al.  Optimal time frequency analysis for biological data - pyBOAT , 2020, bioRxiv.

[9]  Aibin He,et al.  Long-term, in toto live imaging of cardiomyocyte behaviour during mouse ventricle chamber formation at single-cell resolution , 2020, Nature Cell Biology.

[10]  Marius Pachitariu,et al.  Cellpose: a generalist algorithm for cellular segmentation , 2020, Nature Methods.

[11]  Kohske Takahashi,et al.  Welcome to the Tidyverse , 2019, J. Open Source Softw..

[12]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[13]  N. R. Chevalier,et al.  Smooth muscle contractility causes the gut to grow anisotropically , 2019, Journal of the Royal Society Interface.

[14]  D. Sprinzak,et al.  Genetic and Mechanical Regulation of Intestinal Smooth Muscle Development , 2019, Cell.

[15]  M. Labouesse,et al.  An actin-based viscoplastic lock ensures progressive body-axis elongation , 2019, Nature.

[16]  M. Costanzo,et al.  Hydraulic control of mammalian embryo size and cell fate , 2019, Nature.

[17]  H. Baier,et al.  Deconstructing Hunting Behavior Reveals a Tightly Coupled Stimulus-Response Loop , 2019, Current Biology.

[18]  Kornel Labun,et al.  CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing , 2019, Nucleic Acids Res..

[19]  Eva-Maria S. Collins,et al.  Linalool acts as a fast and reversible anesthetic in Hydra , 2019, bioRxiv.

[20]  U. Technau,et al.  A cadherin switch marks germ layer formation in the diploblastic sea anemone Nematostella vectensis , 2019, Development.

[21]  U. Technau,et al.  Cadherin switch marks germ layer formation in the diploblastic sea anemone Nematostella vectensis , 2018 .

[22]  J. A. Farrell,et al.  Stem cell differentiation trajectories in Hydra resolved at single-cell resolution , 2018, Science.

[23]  M. Gibson,et al.  An axial Hox code controls tissue segmentation and body patterning in Nematostella vectensis , 2018, Science.

[24]  Minoru Koyama,et al.  Chronology-based architecture of descending circuits that underlie the development of locomotor repertoire after birth , 2018, bioRxiv.

[25]  Otger Campàs,et al.  Physical control of tissue morphogenesis across scales. , 2018, Current opinion in genetics & development.

[26]  Ian A. Swinburne,et al.  Size control of the inner ear via hydraulic feedback , 2018, bioRxiv.

[27]  A. Tanay,et al.  Cnidarian Cell Type Diversity and Regulation Revealed by Whole-Organism Single-Cell RNA-Seq , 2018, Cell.

[28]  Ayelet T. Lamm,et al.  QsRNA-seq: a method for high-throughput profiling and quantifying small RNAs , 2018, Genome Biology.

[29]  M. Matz,et al.  Molecular characterization of larval development from fertilization to metamorphosis in a reef-building coral , 2018, BMC Genomics.

[30]  P. Nassoy,et al.  Organ size control via hydraulically gated oscillations , 2017, Development.

[31]  E. Zelzer,et al.  Mechanical regulation of musculoskeletal system development , 2017, Development.

[32]  U. Technau,et al.  Meganuclease-assisted generation of stable transgenics in the sea anemone Nematostella vectensis , 2017, Nature Protocols.

[33]  H. Sebastian Seung,et al.  Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification , 2017, Bioinform..

[34]  Patrick R. H. Steinmetz,et al.  Gut-like ectodermal tissue in a sea anemone challenges germ layer homology , 2017, Mechanisms of Development.

[35]  Gongpu Lan,et al.  Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography , 2017, Scientific Reports.

[36]  Erez Braun,et al.  Structural Inheritance of the Actin Cytoskeletal Organization Determines the Body Axis in Regenerating Hydra. , 2017, Cell reports.

[37]  B. Barco,et al.  Ecological Developmental Biology: The Environmental Regulation of Development, Health and Evolution , 2016, The Yale Journal of Biology and Medicine.

[38]  Philippe Andrey,et al.  MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ , 2016, Bioinform..

[39]  O. Liba,et al.  Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging , 2016, Scientific Reports.

[40]  F. Rentzsch,et al.  The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration , 2016, Wiley interdisciplinary reviews. Developmental biology.

[41]  Victor D. Varner,et al.  Localized Smooth Muscle Differentiation Is Essential for Epithelial Bifurcation during Branching Morphogenesis of the Mammalian Lung. , 2015, Developmental cell.

[42]  Chin-Lin Guo,et al.  Self-repairing symmetry in jellyfish through mechanically driven reorganization , 2015, Proceedings of the National Academy of Sciences.

[43]  L. Mahadevan,et al.  Bending Gradients: How the Intestinal Stem Cell Gets Its Home , 2015, Cell.

[44]  F. Rentzsch,et al.  RGM regulates BMP-mediated secondary axis formation in the sea anemone Nematostella vectensis. , 2014, Cell reports.

[45]  S. McKinney,et al.  TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis , 2014, Nature Communications.

[46]  M. Nussenzweig,et al.  Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix , 2014, Science.

[47]  M. Walzl,et al.  Development and epithelial organisation of muscle cells in the sea anemone Nematostella vectensis , 2014, Frontiers in Zoology.

[48]  Matthias F. Wucherer,et al.  Regulation of red fluorescent light emission in a cryptic marine fish , 2014, Frontiers in Zoology.

[49]  G. Genin,et al.  Muscle loading is necessary for the formation of a functional tendon enthesis. , 2013, Bone.

[50]  C. Heisenberg,et al.  Forces in Tissue Morphogenesis and Patterning , 2013, Cell.

[51]  M. Gibson,et al.  Mechanisms of tentacle morphogenesis in the sea anemone Nematostella vectensis , 2013, Development.

[52]  A. Cardona,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[53]  Lars Hufnagel,et al.  Multiview light-sheet microscope for rapid in toto imaging , 2012, Nature Methods.

[54]  W. Kier The diversity of hydrostatic skeletons , 2012, Journal of Experimental Biology.

[55]  R. C. Bertossa,et al.  Morphology and behaviour: functional links in development and evolution , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[56]  T. Flatt,et al.  Mechanisms of Life History Evolution: The Genetics and Physiology of Life History Traits and Trade-Offs , 2011 .

[57]  D. Hayward,et al.  The biology of coral metamorphosis: molecular responses of larvae to inducers of settlement and metamorphosis. , 2011, Developmental biology.

[58]  Michel Labouesse,et al.  A tension-induced mechanotransduction pathway promotes epithelial morphogenesis , 2011, Nature.

[59]  Ignacio Arganda-Carreras,et al.  3D reconstruction of histological sections: Application to mammary gland tissue , 2010, Microscopy research and technique.

[60]  C. Rueden,et al.  Metadata matters: access to image data in the real world , 2010, The Journal of cell biology.

[61]  Grigory Genikhovich,et al.  Induction of spawning in the starlet sea anemone Nematostella vectensis, in vitro fertilization of gametes, and dejellying of zygotes. , 2009, Cold Spring Harbor protocols.

[62]  Pietro Perona,et al.  High-throughput Ethomics in Large Groups of Drosophila , 2009, Nature Methods.

[63]  Rob J Hyndman,et al.  Automatic Time Series Forecasting: The forecast Package for R , 2008 .

[64]  A. Zeileis,et al.  Regression Models for Count Data in R , 2008 .

[65]  Steven Vogel,et al.  Living in a physical world X. Pumping fluids through conduits , 2007, Journal of Biosciences.

[66]  J. Fox The R Commander: A Basic-Statistics Graphical User Interface to R , 2005 .

[67]  A. Zeileis,et al.  zoo: S3 Infrastructure for Regular and Irregular Time Series , 2005, math/0505527.

[68]  J. Finnerty,et al.  Investigating the origins of triploblasty: `mesodermal' gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa) , 2004, Development.

[69]  A. King,et al.  The case for developmental ecology , 2003, Animal Behaviour.

[70]  T. Leitz,et al.  Metamorphosis in the Cnidaria , 2002 .

[71]  A. Miyawaki,et al.  An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  H. Sparr,et al.  Clinical Pharmacokinetics of Rocuronium Bromide , 1996, Clinical pharmacokinetics.

[73]  C. Hand,et al.  The Culture, Sexual and Asexual Reproduction, and Growth of the Sea Anemone Nematostella vectensis. , 1992, The Biological bulletin.

[74]  Thomas A. McMahon,et al.  Muscles, Reflexes, and Locomotion , 1984 .

[75]  P. Bateson,et al.  Ontogeny of behaviour. , 1981, British medical bulletin.

[76]  R. Alexander Viso-Elastic Properties of the Body-Wall of Sea Anemones , 1962 .

[77]  C. Pantin,et al.  The organization of the muscular system of Metridium senile. , 1951, The Quarterly journal of microscopical science.

[78]  C. Pantin,et al.  Muscular and hydrostatic action in the sea-anemone Metridium senile (L.). , 1950, The Journal of experimental biology.

[79]  Xiaodong Wu,et al.  Optimal Surface Segmentation in Volumetric Images-A Graph-Theoretic Approach , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[80]  V. Hinman,et al.  Ecological regulation of development: induction of marine invertebrate metamorphosis. , 2002, The International journal of developmental biology.

[81]  T. Leitz Induction of settlement and metamorphosis of Cnidarian larvae: Signals and signal transduction , 1997 .