A Unified Library of Nonlinear Solution Schemes

1 A Unified Library of Nonlinear Solution Schemes Sofie E. Leon1, Glaucio H. Paulino1, Anderson Pereira2, Ivan F. M. Menezes2, Eduardo N. Lages2 1 Civil and Environmental Engineering Department, University of Illinois, Urbana, IL, USA 2 Group of Technology in Computer Graphics, Pontifical Catholic University ,Rio de Janeiro, RJ, Brazil 3 Center of Technology, Federal University of Alagoas, Maceio, Alagoas, Brazil

[1]  Anthony N. Palazotto,et al.  Nonlinear Analysis of Shell Structures , 1992 .

[2]  M. Crisfield,et al.  Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .

[3]  K. Bathe,et al.  ON THE AUTOMATIC SOLUTION OF NONLINEAR FINITE ELEMENT EQUATIONS , 1983 .

[4]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..

[5]  F S Manuel,et al.  LARGE DEFLECTIONS AND STABILITY OF ELASTIC FRAMES , 1968 .

[6]  Judy P. Yang,et al.  Key Considerations in Tracing the Postbuckling Response of Structures with Multi Winding Loops , 2007 .

[7]  Glaucio H. Paulino,et al.  Nonlinear Finite Element Analysis using an Object-Oriented Philosophy – Application to Beam Elements and to the Cosserat Continuum , 1999, Engineering with Computers.

[8]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[9]  Tsu-Wei Chou,et al.  Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces , 2003 .

[10]  Steen Krenk,et al.  A dual orthogonality procedure for non-linear finite element equations , 1995 .

[11]  K. C. Park,et al.  A family of solution algorithms for nonlinear structural analysis based on relaxation equations , 1982 .

[12]  Jian Fei Chen,et al.  Fully automatic modelling of cohesive discrete crack propagation in concrete beams using local arc-length methods , 2004 .

[13]  Herbert H. H. Homeier On Newton-type methods with cubic convergence , 2005 .

[14]  Peter Wriggers,et al.  Non-linear finite element analysis of solids and structures, volume 1: Essentials, M. A. Crisfield, John Wiley. ISBN: 0-471-92956-5 , 1994 .

[15]  James F. Doyle,et al.  Nonlinear analysis of thin-walled structures : statics, dynamics, and stability , 2001 .

[16]  Janak Raj Sharma,et al.  A family of modified Ostrowski methods with accelerated sixth order convergence , 2007, Appl. Math. Comput..

[17]  Jafar Biazar,et al.  Solution of nonlinear equations by modified adomian decomposition method , 2002, Appl. Math. Comput..

[18]  Ali Barati,et al.  A third-order Newton-type method to solve systems of nonlinear equations , 2007, Appl. Math. Comput..

[19]  Changbum Chun,et al.  A new iterative method for solving nonlinear equations , 2006, Appl. Math. Comput..

[20]  A. Golbabai,et al.  A new family of iterative methods for solving system of nonlinear algebric equations , 2007, Appl. Math. Comput..

[21]  Ji-Huan He,et al.  Addendum:. New Interpretation of Homotopy Perturbation Method , 2006 .

[22]  G. Domairry,et al.  Assessment of homotopy analysis method and homotopy perturbation method in non-linear heat transfer equation , 2008 .

[23]  Dinar Camotim,et al.  On the arc-length and other quadratic control methods: Established, less known and new implementation procedures , 2008 .

[24]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[25]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[26]  Ji-Huan He SOME ASYMPTOTIC METHODS FOR STRONGLY NONLINEAR EQUATIONS , 2006 .

[27]  David R. Owen,et al.  A new criterion for determination of initial loading parameter in arc-length methods , 1996 .

[28]  N. E. Shanmugam,et al.  Advanced analysis and design of spatial structures , 1997 .

[29]  Ji-Huan He Homotopy perturbation technique , 1999 .

[30]  Qingbiao Wu,et al.  A new family of eighth-order iterative methods for solving nonlinear equations , 2009, Appl. Math. Comput..

[31]  S. Mukherjee,et al.  Applications of the boundary element method to large strain large deformation problems of viscoplasticity , 1983 .

[32]  Ji-Huan He,et al.  Homotopy perturbation method: a new nonlinear analytical technique , 2003, Appl. Math. Comput..

[33]  G. Adomian A review of the decomposition method in applied mathematics , 1988 .

[34]  K. K. Choong,et al.  Variable displacement control to overcome turning points of nonlinear elastic frames , 1992 .

[35]  J. Reddy An introduction to nonlinear finite element analysis , 2004 .

[36]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[37]  Ignacio Carol,et al.  Consistent tangent formulation for 3D interface modeling of cracking/fracture in quasi-brittle materials , 2008 .

[38]  Tsu-Wei Chou,et al.  Multiscale modeling of carbon nanotube reinforced polymer composites. , 2003, Journal of nanoscience and nanotechnology.

[39]  S. Mukherjee,et al.  Boundary element formulations for large strain-large deformation problems of viscoplasticity , 1984 .

[40]  Erasmo Carrera,et al.  A study on arc-length-type methods and their operation failures illustrated by a simple model , 1994 .

[41]  Davood Domiri Ganji,et al.  Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations , 2007 .

[42]  Z. Bažant,et al.  Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories , 1993 .

[43]  Yanfei Gao,et al.  A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces , 2004 .

[44]  Aditi Chattopadhyay,et al.  Delamination buckling and postbuckling of composite cylindrical shells , 1995 .

[45]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[46]  Huu-Tai Thai,et al.  Large deflection inelastic analysis of space trusses using generalized displacement control method , 2009 .

[47]  R. Kouhia Stabilized forms of orthogonal residual and constant incremental work control path following methods , 2008 .

[48]  Asghar Ghorbani,et al.  He's Homotopy Perturbation Method for Calculating Adomian Polynomials , 2007 .

[49]  Timothy A. Davis,et al.  A column pre-ordering strategy for the unsymmetric-pattern multifrontal method , 2004, TOMS.

[50]  Jesper L. Asferg,et al.  A consistent partly cracked XFEM element for cohesive crack growth , 2007 .

[51]  Ji-Huan He Application of homotopy perturbation method to nonlinear wave equations , 2005 .

[52]  K. Suresh,et al.  A robust continuation method to pass limit-point instability , 2011 .

[53]  P. G. Bergan,et al.  Solution algorithms for nonlinear structural problems , 1980 .

[54]  L. Nielsen,et al.  An Enhanced Cohesive Crack Element for XFEM using a Double Enriched Displacement Field , 2007 .

[55]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[56]  Benjamin S. Kirk,et al.  Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .

[57]  Emílio C. N. Silva,et al.  Recycling Krylov subspaces for efficient large-scale electrical impedance tomography , 2010 .

[58]  G. Powell,et al.  Improved iteration strategy for nonlinear structures , 1981 .

[59]  E. L. Cardoso,et al.  The GDC method as an orthogonal arc‐length method , 2006 .

[60]  Yeong-Bin Yang,et al.  Constitutive laws and force recovery procedures in nonlinear analysis of trusses , 1991 .

[61]  C. T. Morley,et al.  Arc-Length Method for Passing Limit Points in Structural Calculation , 1992 .

[62]  Michael T. Heath,et al.  Scientific Computing: An Introductory Survey , 1996 .

[63]  S. N. Al-Rasby Solution techniques in nonlinear structural analysis , 1991 .

[64]  E. Sturler,et al.  Large‐scale topology optimization using preconditioned Krylov subspace methods with recycling , 2007 .

[65]  Glaucio H. Paulino,et al.  A compact adjacency‐based topological data structure for finite element mesh representation , 2005 .

[66]  Ji-Huan He AN ELEMENTARY INTRODUCTION TO RECENTLY DEVELOPED ASYMPTOTIC METHODS AND NANOMECHANICS IN TEXTILE ENGINEERING , 2008 .

[67]  Kou Ji-sheng,et al.  A uniparametric Chebyshev-type method free from second derivatives , 2006 .

[68]  Fumio Fujii,et al.  PINPOINTING BIFURCATION POINTS AND BRANCH-SWITCHING , 1997 .

[69]  I. Carol,et al.  Micromechanical analysis of quasi‐brittle materials using fracture‐based interface elements , 2001 .

[70]  Y. Cherruault,et al.  Convergence of Adomian's method applied to nonlinear equations , 1994 .

[71]  Graham H. Powell,et al.  Evaluation of solution schemes for nonlinear structures , 1978 .

[72]  L. Leu,et al.  Inelastic postbuckling response of steel trusses under thermal loadings , 2008 .

[73]  Sunethra Weerakoon,et al.  A variant of Newton's method with accelerated third-order convergence , 2000, Appl. Math. Lett..

[74]  M. Crisfield,et al.  Non‐Linear Finite Element Analysis of Solids and Structures, Volume 1 , 1993 .

[75]  Herbert A. Mang,et al.  On the interdependency of primary and initial secondary equilibrium paths in sensitivity analysis of elastic structures , 2011 .

[76]  Ji-Huan He A coupling method of a homotopy technique and a perturbation technique for non-linear problems , 2000 .

[77]  R. F. King A Family of Fourth Order Methods for Nonlinear Equations , 1973 .

[78]  Yeong-bin Yang,et al.  Solution method for nonlinear problems with multiple critical points , 1990 .

[79]  Ji-Huan He,et al.  Α Review on Some New Recently Developed Nonlinear Analytical Techniques , 2000 .

[80]  Joseph Padovan,et al.  Self-adaptive predictor-corrector algorithms for static nonlinear structural analysis , 1982 .

[81]  G. Wempner Discrete approximations related to nonlinear theories of solids , 1971 .

[82]  George Adomian,et al.  On the solution of algebraic equations by the decomposition method , 1985 .

[83]  Glaucio H. Paulino,et al.  On the constitutive relation of materials with microstructure using a potential-based cohesive model for interface interaction , 2010 .

[84]  K. Bathe Finite Element Procedures , 1995 .

[85]  Elizabeth A. Burroughs,et al.  LOCA 1.0 Library of Continuation Algorithms: Theory and Implementation Manual , 2002 .

[86]  George E. Blandford,et al.  Work-increment-control method for non-linear analysis , 1993 .

[87]  Glaucio H. Paulino,et al.  Implicit consistent and continuum tangent operators in elastoplastic boundary element formulations , 2001 .

[88]  M. Frontini,et al.  Some variant of Newton's method with third-order convergence , 2003, Appl. Math. Comput..

[89]  Ahmet Yildirim,et al.  Comparison between Adomian's method and He's homotopy perturbation method , 2008, Comput. Math. Appl..

[90]  Evandro Parente,et al.  Improvement of semi‐analytical design sensitivities of non‐linear structures using equilibrium relations , 2001 .

[91]  A. Chulya,et al.  An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations , 1987 .

[92]  Ali Barati,et al.  Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations , 2010, J. Comput. Appl. Math..

[93]  S. Abbasbandy THE APPLICATION OF HOMOTOPY ANALYSIS METHOD TO NONLINEAR EQUATIONS ARISING IN HEAT TRANSFER , 2006 .

[94]  M. J. Clarke,et al.  A study of incremental-iterative strategies for non-linear analyses , 1990 .

[95]  N. E. Shanmugam,et al.  Nonlinear Analysis of In-Filled Steel-Concrete Composite Columns , 2002 .

[96]  M. Crisfield An arc‐length method including line searches and accelerations , 1983 .

[97]  Ekkehard Ramm,et al.  Computational bifurcation theory : path-tracing, pinpointing and path-switching , 1997 .

[98]  Saeid Abbasbandy,et al.  Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method , 2003, Appl. Math. Comput..

[99]  P. Bergan,et al.  Solution techniques for non−linear finite element problems , 1978 .

[100]  Muhammad Aslam Noor,et al.  Three-step iterative methods for nonlinear equations , 2006, Appl. Math. Comput..

[101]  Asghar Ghorbani,et al.  Beyond Adomian polynomials: He polynomials , 2009 .

[102]  Yitian Li,et al.  A modification of Newton method with third-order convergence , 2006, Appl. Math. Comput..

[103]  Peter Wriggers,et al.  Consistent linearization for path following methods in nonlinear FE analysis , 1986 .

[104]  Miran Saje,et al.  A quadratically convergent algorithm for the computation of stability points: The application of the determinant of the tangent stiffness matrix , 1999 .

[105]  E. Riks The Application of Newton's Method to the Problem of Elastic Stability , 1972 .

[106]  Ekkehard Ramm,et al.  Strategies for Tracing the Nonlinear Response Near Limit Points , 1981 .

[107]  M. Tatar,et al.  Some Geometrical Bases for Incremental-Iterative Methods , 2009 .

[108]  M. Z. Dauhoo,et al.  An analysis of the properties of the variants of Newton's method with third order convergence , 2006, Appl. Math. Comput..

[109]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[110]  Davood Domiri Ganji,et al.  Solution of the Generalized Nonlinear Boussinesq Equation Using Homotopy Perturbation and Variational Iteration Methods , 2007 .

[111]  Siegfried F. Stiemer,et al.  Improved arc length orthogonality methods for nonlinear finite element analysis , 1987 .

[112]  James F. Doyle,et al.  Nonlinear Analysis of Thin-Walled Structures , 2001 .

[113]  Peter Wriggers,et al.  A general procedure for the direct computation of turning and bifurcation points , 1990 .

[114]  V. Mallardo,et al.  Arc-length procedures with BEM in physically nonlinear problems , 2004 .

[115]  Eric de Sturler,et al.  Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..

[116]  Lars Damkilde,et al.  A Flat Triangular Shell Element With Loof Nodes Based on Discrete Kirchhoff Theory , 1996 .

[117]  Ali Barati,et al.  Super cubic iterative methods to solve systems of nonlinear equations , 2007, Appl. Math. Comput..

[118]  P. Frank Pai,et al.  Highly Flexible Structures : Modeling, Computation, and Experimentation , 2007 .

[119]  K. Cheung,et al.  Homotopy analysis of nonlinear progressive waves in deep water , 2003 .

[120]  Yeong-bin Yang,et al.  A WORK WEIGHTED STATE VECTOR CONTROL METHOD FOR GEOMETRICALLY NONLINEAR ANALYSIS , 1993 .

[121]  Steen Krenk,et al.  An orthogonal residual procedure for non‐linear finite element equations , 1995 .

[122]  Gouri Dhatt,et al.  Incremental displacement algorithms for nonlinear problems , 1979 .