Electrochemistry of supported bilayer lipid membranes: background and techniques for biosensor development

Abstract Biomembranes play a pivotal role in signal transduction and information processing. This is due to the fact that most physiological activities involve some kind of lipid bilayer-based receptor-ligand contact interactions. There are many outstanding examples such as ion sensing, antigen-antibody binding, and ligand-gated channels, to name a few. One approach to study these interactions in vitro has been facilitated by employing self-assembled bilayer lipid membranes (BLMs). Our efforts have been focused on ion and/or molecular selectivity and specificity using easy-to-prepare self-assembled BLMs on solid support (i.e., s-BLMs and sb-BLMs) which, with their enhanced stability, greatly aid in research areas of membrane biophysics, biochemistry, and cell biology as well as in biosensor designs and molecular devices development. In this paper, our current work along with the experiments done in close collaboration with others on supported BLMs towards biosensor development will be discussed.

[1]  O. Shirai,et al.  Ion transfer through a liquid membrane or a bilayer lipid membrane in the presence of sufficient electrolytes , 1995 .

[2]  H. Gaub,et al.  Painted supported lipid membranes. , 1993, Biophysical journal.

[3]  T. Yagami,et al.  Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests , 1994 .

[4]  R. Pandey LATERAL DIFFUSION IN A BINARY LIPID SYSTEM BY A COMPUTER SIMULATION MODEL , 1996 .

[5]  H. Ti Tien,et al.  Iodide sensitive sensor based on a supported bilayer lipid membrane containing a cluster form of carbon (fullerene C60) , 1996 .

[6]  Ying Zhang,et al.  Photoelectric response of bilayer lipid membrane doped with some metallochlorophylls , 1996 .

[7]  Y. Yonezawa,et al.  Photoelectric response of black lipid membranes incorporating an amphiphilic azobenzene derivative , 1992 .

[8]  H. Ti Tien,et al.  Thin-film microsystem applicable in (bio)chemical sensors , 1994 .

[9]  H. Nakanishi,et al.  Characterization of the preparation process and the photochemical control of electrical properties of bilayer lipid membranes containing azobenzene chromophores. , 1993, Biochimica et biophysica acta.

[10]  T. Miyashita,et al.  Spreading behavior of polymerizable monolayers of acrylamides with double alkyl chains and polymerization of the LB films , 1995 .

[11]  H. Ti Tien,et al.  A new method for the determination of electrical properties of supported bilayer lipid membranes by cyclic voltammetry , 1996 .

[12]  J. Janata,et al.  Use of poly(octadec-1-ene-maleic anhydride) for interfacing bilayer membranes to solid supports in sensor applications , 1990 .

[13]  T. Tjärnhage,et al.  Liposome and proteoliposome fusion onto solid substrates, studied using atomic force microscopy, quartz crystal microbalance and surface plasmon resonance. Biological activities of incorporated components , 1995 .

[14]  P. Seta,et al.  Mechanism and kinetic analysis of the photo-induced electron transfer mediated by a stacked metallotriporphyrin in planar lipid bilayers , 1992 .

[15]  S. Zakeeruddin,et al.  Glucose oxidase mediation by soluble and immobilized electroactive detergents. , 1996, Biosensors & bioelectronics.

[16]  Light-dependent immobilization of biomolecules on material and lipid bilayer membrane surfaces , 1995 .

[17]  Ivan Ivanov,et al.  Thin liquid films : fundamentals and applications , 1988 .

[18]  Tuan Vo-Dinh,et al.  SERS chemical sensors and biosensors: new tools for environmental and biological analysis☆ , 1995 .

[19]  D. Schiffrin,et al.  Redox electrocatalysis by tetracyanoquinodimethane in phospholipid monolayers adsorbed at a liquid/liquid interface , 1994 .

[20]  Rajinder S. Sethi,et al.  Transducer aspects of biosensors , 1991 .

[21]  Felix T. Hong,et al.  Molecular Electronics: Biosensors and Biocomputers , 1989 .

[22]  F. Menger,et al.  Cytomimetic Organic Chemistry: Early Developments , 1995 .

[23]  H. T. Tien,et al.  Bilayer lipid membranes [BLM]: an experimental system for biomolecular electronic devices development , 1992 .

[24]  H. Monbouquette,et al.  Direct electron transfer to Escherichia coli fumarate reductase in self-assembled alkanethiol monolayers on gold electrodes , 1993 .

[25]  Ding Zhou,et al.  Thin-film biosensor for the measurement of glucose concentration in human serum and urine , 1995 .

[26]  T. Kuwana,et al.  Ion channel sensors for glutamic acid. , 1991, Analytical chemistry.

[27]  H. Tien Cyclic voltammetry of bilayer lipid membranes , 1984 .

[28]  Irving Langmuir,et al.  Built-Up Films of Barium Stearate and Their Optical Properties , 1937 .

[29]  M. Šnejdárková,et al.  Hydrogen peroxide/oxygen biosensor based on supported phospholipid bilayer , 1992 .

[30]  Kiyoshi Toko,et al.  Effect of taste substances on electric characteristics of a lipid cast membrane with a single pore , 1989 .

[31]  H. Gaub,et al.  Immobilization of enzymes on Langmuir-Blodgett films via a membrane-bound receptor. Possible applications for amperometric biosensors , 1991 .

[32]  S. Kalinowski,et al.  A four-electrode potentiostat-galvanostat for studies of bilayer lipid membranes , 1995 .

[33]  P. Yager,et al.  Formation of Planar Solvent-Free Phospholipid Bilayers by Langmuir-Blodgett Transfer of Monolayers to Micromachined Apertures in Silicon , 1995 .

[34]  D. Mandler,et al.  Applications of self-assembled monolayers in electroanalytical chemistry , 1996 .

[35]  H. Gerischer Solar photoelectrolysis with semiconductor electrodes , 1979 .

[36]  S. Krueger,et al.  Neutron Reflectivity and Atomic Force Microscopy Studies of a Lipid Bilayer in Water Adsorbed to the Surface of a Silicon Single Crystal , 1996 .

[37]  E. Bamberg,et al.  Charge transport by ion translocating membrane proteins on solid supported membranes. , 1993, Biophysical journal.

[38]  E. Wang,et al.  Charge transfer across a conducting polypyrrole membrane separated by two electrolyte solutions , 1990 .

[39]  P. Paquin,et al.  Formation of asymmetrical planar lipid bilayer membranes from characterized monolayers. , 1983, Journal of biochemical and biophysical methods.

[40]  H. Tien,et al.  Electrical oscillations in polypyrrole-lecithin bilayer lipid membranes , 1988 .

[41]  L. Cun,et al.  Platinum-supported Bilayer Lipid Membranes modified by ferrocene and its derivatives , 1992 .

[42]  D. Madamwar,et al.  Photo-osmosis through liquid membrane bilayers , 1995, Applied biochemistry and biotechnology.

[43]  R. Crooks,et al.  Interactions between Organized, Surface-Confined Monolayers and Liquid-Phase Probe Molecules. 4. Synthesis and Characterization of Nanoporous Molecular Assemblies: Mechanism of Probe Penetration , 1995 .

[44]  V. Chauhan,et al.  Phospholipid binding, phosphorylation by protein kinase C, and filament assembly of the COOH terminal heavy chain fragments of nonmuscle myosin II isoforms MIIA and MIIB. , 1995, Biochemistry.

[45]  R. Heenan,et al.  Solubilisation of C60 in aqueous micellar solution , 1994 .

[46]  A. Bravo,et al.  δ‐Endotoxins induce cation channels in Spodoptera frugiperda brush border membranes in suspension and in planar lipid bilayers , 1995 .

[47]  N. Dimitrov,et al.  Changes in calcium channel activity in membranes from cis-diammine-dichloroplatinum(II)-resistant and -sensitive L1210 cells. , 1987, Cancer research.

[48]  E. Wang,et al.  Electrochemical study of ion transfer across the polypyrrole membrane between two electrolyte solutions , 1990 .

[49]  H. Tien,et al.  Biophysical aspects of agar-gel supported bilayer lipid nembranes: a new method for forming and studying planar bilayer lipid membranes , 1996 .

[50]  K. Kurihara,et al.  Guest selective molecular recognition by an octadecylsilyl monolayer covalently bound on an SnO2 electrode , 1988 .

[51]  R. Bensasson,et al.  Transmembrane electron transport mediated by photoexcited fullerenes , 1993 .

[52]  W C Davis,et al.  A highly stable and selective biosensor using modified nicotinic acetylcholine receptor (nAChR). , 1995, Bio Systems.

[53]  M. Karhanek,et al.  Comparison of transient and successful fusion pores connecting influenza hemagglutinin expressing cells to planar membranes , 1995, The Journal of General Physiology.

[54]  L. Dei,et al.  Effect of halothane on the electrical properties of mixed bilayers of glycerol monooleate andl,α-dipalmitoylphosphatidylcholine , 1995 .

[55]  J. R. Vilche,et al.  An investigation by EIS of gramicidin channels in bilayer lipid membranes , 1995 .

[56]  Hiroshi Nakanishi Artificial retina membranes , 1995 .

[57]  D. Seebach,et al.  Channel‐Forming Activity of 3‐Hydroxybutanoic‐Acid Oligomers in Planar Lipid Bilayers , 1996 .

[58]  P. Bianco,et al.  Lipid‐modified pyrolytic graphite electrodes for the study of negatively charged species , 1995 .

[59]  A. Bangham Surrogate cells or Trojan horses. The discovery of liposomes. , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[60]  M. D. Castro,et al.  Ion‐sensitive field‐effect transistors and ion‐selective electrodes as sensors in dynamic systems , 1995 .

[61]  T. Hianik,et al.  STABILIZATION OF BILAYER LIPID MEMBRANES ON SOLID SUPPORTS BY TREHALOSE , 1996 .

[62]  A. Gliozzi,et al.  Electroporation in symmetric and asymmetric membranes. , 1993, Biochimica et biophysica acta.

[63]  P. Bianco,et al.  Control of the electron transfer reactions between c-type cytochromes and lipid-modified electrodes , 1994 .

[64]  G. Melikyan,et al.  The influence of gangliosides on the hydrophilic pore edge line tension and monolayer fusion of lipid membranes. , 1990, Biochimica et biophysica acta.

[65]  Y. Umezawa,et al.  Na+/D-glucose cotransporter based bilayer lipid membrane sensor for D-glucose. , 1993, Analytical chemistry.

[66]  R. Rolandi,et al.  Photovoltage generation in bilayer lipid membrane-cadmium sulfide junctions , 1992 .

[67]  H. Tien Bilayer lipid membrane‐based electrochemical biosensors , 1988 .

[68]  Y. Umezawa,et al.  Comparative Study on the Potentiometric Responses between a Valinomycin-Based Bilayer Lipid Membrane and a Solvent Polymeric Membrane , 1991 .

[69]  Jerome S. Schultz,et al.  Handbook of Chemical and Biological Sensors , 1996 .

[70]  K. Maeda,et al.  Membrane oscillations and ion transport , 1994 .

[71]  Huipin Yuan,et al.  An agarose-stabilized BLM: a new method for forming bilayer lipid membranes , 1996 .

[72]  J. Garnaes,et al.  Langmuir-Blodgett films. , 1994, Science.

[73]  J. Rácek Cell-Based Biosensors , 1995 .

[74]  F. B. Diniz,et al.  The Effect of Electron Transfer on the Potential of Certain Electronically Conducting Membranes , 1988 .

[75]  E. Paleček,et al.  Adsorptive stripping voltammetry of biomacromolecules with transfer of the adsorbed layer , 1986 .

[76]  T. Tsong,et al.  Electroporation of cell membranes. , 1991, Biophysical journal.

[77]  Jan W. Verhoeven,et al.  Photoinduced intramolecular electron transfer in a bridged C60(Acceptor)-Aniline(Donor)system. Photophysical properties of the first active fullerene Diad , 1995 .

[78]  H. Tien,et al.  Polymer-modified bilayer lipid membranes: the polypyrrole—lecithin system , 1988 .

[79]  C. Gavach,et al.  Zero-current bilayer membrane potential , 1983 .

[80]  H. Ti Tien,et al.  Crown Ether-Modified Bilayer Lipid Membranes on Solid Support as Ion Sensors , 1995 .

[81]  P. Schürmann,et al.  The oxidation-reduction properties of spinach thioredoxins f and m and of ferredoxin:thioredoxin reductase. , 1995, Biochimica et biophysica acta.

[82]  W. M. Albers,et al.  PREPARATION OF EXTENDED DI(4-PYRIDYL)THIOPHENE OLIGOMERS , 1995 .

[83]  H. Tien Self-assembled lipid bilayers as a smart material for nanotechnology , 1995 .

[84]  M. Zviman,et al.  Reconstituted olfactory receptors in bilayer lipid membranes , 1995 .

[85]  R. Stromberg,et al.  Techniques of surface and colloid chemistry and physics , 1972 .

[86]  H. Tien,et al.  ELECTROCHEMICAL TRANSDUCTION OF AN IMMUNOLOGICAL REACTION VIA S-BLMS , 1995 .