Interpolation approximations based on Gauss-Lobatto-Legendre-Birkhoff quadrature

We derive in this paper the asymptotic estimates of the nodes and weights of the Gauss-Lobatto-Legendre-Birkhoff (GLLB) quadrature formula, and obtain optimal error estimates for the associated GLLB interpolation in Jacobi weighted Sobolev spaces. We also present a user-oriented implementation of the pseudospectral methods based on the GLLB quadrature nodes for Neumann problems. This approach allows an exact imposition of Neumann boundary conditions, and is as efficient as the pseudospectral methods based on Gauss-Lobatto quadrature for PDEs with Dirichlet boundary conditions.

[1]  Philippe G. Ciarlet,et al.  Techniques of Scientific Computing , 1997 .

[2]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[3]  Ben-yu Guo,et al.  Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces , 2004, J. Approx. Theory.

[4]  Guo Ben-yu,et al.  Jacobi interpolation approximations and their applications to singular differential equations , 2001 .

[5]  W. Merryfield,et al.  Properties of Collocation Third-Derivative Operators , 1993 .

[6]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[7]  P. Brandimarte Finite Difference Methods for Partial Differential Equations , 2006 .

[8]  C. Canuto Boundary conditions in Chebyshev and Legendre methods , 1986 .

[9]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[10]  Ben-Yu Guo,et al.  Jacobi Approximations in Certain Hilbert Spaces and Their Applications to Singular Differential Equations , 2000 .

[11]  G. Szegö Recent Advances and Open Questions on the Asymptotic Expansions of Orthogonal Polynomials , 1959 .

[12]  Yuan Xu Quasi-orthogonal Polynomials, Quadrature, and Interpolation , 1994 .

[13]  M. Chipot Finite Element Methods for Elliptic Problems , 2000 .

[14]  Michel O. Deville,et al.  Finite-Element Preconditioning for Pseudospectral Solutions of Elliptic Problems , 1990, SIAM J. Sci. Comput..

[15]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[16]  K. Jetter Uniqueness of Gauss-Birkhoff quadrature formulas , 1987 .

[17]  ShenJie Efficient spectral-Galerkin method I , 1994 .

[18]  D. Funaro A variational formulation for the Chebyshev pseudospectral approximation of Neumann problems , 1990 .

[19]  D. Funaro Polynomial Approximation of Differential Equations , 1992 .

[20]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[21]  Zdzisław Kamont,et al.  Difference methods for non-linear partial differential equations of the first order , 1988 .

[22]  K. Jetter A New Class of Gaussian Quadrature Formulas Based on Birkhoff Type Data , 1982 .

[23]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[24]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[25]  Weizhang Huang,et al.  The pseudospectral method for third-order differential equations , 1992 .

[26]  Allal Guessab,et al.  A fast algorithm for Gaussian type quadrature formulae with mixed boundary conditions and some lumped mass spectral approximations , 1999, Math. Comput..

[27]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .