CAUSAL DYNAMICAL TRIANGULATIONS AND THE SEARCH FOR A THEORY OF QUANTUM GRAVITY

Causal dynamical triangulations provide a nonperturbative regularization of a theory of quantum gravity. We describe how it connects to the asymptotic safety program and to the Hořava–Lifshitz gravity theory and present the most recent results from computer simulations.

[1]  Yuki Sato,et al.  2d CDT is 2d Hořava–Lifshitz quantum gravity , 2013, 1302.6359.

[2]  Jerzy Jurkiewicz,et al.  Second- and first-order phase transitions in causal dynamical triangulations , 2012 .

[3]  J. Jurkiewicz,et al.  Nonperturbative quantum gravity , 2012, 1203.3591.

[4]  Patrick R. Zulkowski,et al.  Quantizing Horava-Lifshitz Gravity via Causal Dynamical Triangulations , 2011, 1111.6634.

[5]  J. Jurkiewicz,et al.  Second-order phase transition in causal dynamical triangulations. , 2011, Physical review letters.

[6]  A. Görlich,et al.  The semiclassical limit of causal dynamical triangulations , 2011, 1102.3929.

[7]  A. Görlich,et al.  CDT meets Hořava-Lifshitz gravity , 2010, 1002.3298.

[8]  E. Kiritsis,et al.  Horava-Lifshitz Cosmology , 2009, 0904.1334.

[9]  G. Calcagni Cosmology of the Lifshitz universe , 2009, 0904.0829.

[10]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[11]  J. Jurkiewicz,et al.  Nonperturbative quantum de Sitter universe , 2008, 0807.4481.

[12]  A. Görlich,et al.  Planckian birth of a quantum de sitter universe. , 2007, Physical review letters.

[13]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[14]  Ruth M. Williams,et al.  Nonlocal effective gravitational field equations and the running of Newton's constant G , 2005, hep-th/0507017.

[15]  J. Jurkiewicz,et al.  Reconstructing the universe , 2005, hep-th/0505154.

[16]  J. Jurkiewicz,et al.  Semiclassical universe from first principles , 2004, hep-th/0411152.

[17]  Copenhagen,et al.  Emergence of a 4D world from causal quantum gravity. , 2004, Physical review letters.

[18]  D. Litim Fixed points of quantum gravity. , 2003, Physical review letters.

[19]  J. Jurkiewicz,et al.  Dynamically Triangulating Lorentzian Quantum Gravity , 2001, hep-th/0105267.

[20]  Ambjorn,et al.  Nonperturbative lorentzian path integral for gravity , 2000, Physical review letters.

[21]  R. Loll,et al.  The relation between Euclidean and Lorentzian 2D quantum gravity , 1999, hep-th/9912267.

[22]  J. Ambjorn,et al.  Non-perturbative Lorentzian Quantum Gravity, Causality and Topology Change , 1998, hep-th/9805108.

[23]  J. Ambjorn,et al.  Quantum geometry of 2D gravity coupled to unitary matter , 1997, hep-lat/9701006.

[24]  M. Ninomiya,et al.  Renormalizability of quantum gravity near two dimensions , 1995, hep-th/9511217.

[25]  J. Jurkiewicz,et al.  On the fractal structure of two-dimensional quantum gravity , 1995, hep-lat/9507014.

[26]  J. Ambjorn,et al.  Scaling in quantum gravity , 1995, hep-th/9501049.

[27]  M. Ninomiya,et al.  Conformal invariance and renormalization group in quantum gravity near two dimensions , 1994, hep-th/9404171.

[28]  M. Ninomiya,et al.  Ultraviolet stable fixed point and scaling relations in (2 + ϵ)-dimensional quantum gravity☆ , 1993, hep-th/9303123.

[29]  M. Ninomiya,et al.  Scaling exponents in quantum gravity near two dimensions , 1992, hep-th/9206081.

[30]  Masao Ninomiya,et al.  Renormalization Group and Quantum Gravity , 1990 .

[31]  J. Hartle,et al.  Wave Function of the Universe , 1983 .

[32]  C. Teitelboim Causality Versus Gauge Invariance in Quantum Gravity and Supergravity , 1983 .

[33]  T. Regge General relativity without coordinates , 1961 .