CAUSAL DYNAMICAL TRIANGULATIONS AND THE SEARCH FOR A THEORY OF QUANTUM GRAVITY
暂无分享,去创建一个
[1] Yuki Sato,et al. 2d CDT is 2d Hořava–Lifshitz quantum gravity , 2013, 1302.6359.
[2] Jerzy Jurkiewicz,et al. Second- and first-order phase transitions in causal dynamical triangulations , 2012 .
[3] J. Jurkiewicz,et al. Nonperturbative quantum gravity , 2012, 1203.3591.
[4] Patrick R. Zulkowski,et al. Quantizing Horava-Lifshitz Gravity via Causal Dynamical Triangulations , 2011, 1111.6634.
[5] J. Jurkiewicz,et al. Second-order phase transition in causal dynamical triangulations. , 2011, Physical review letters.
[6] A. Görlich,et al. The semiclassical limit of causal dynamical triangulations , 2011, 1102.3929.
[7] A. Görlich,et al. CDT meets Hořava-Lifshitz gravity , 2010, 1002.3298.
[8] E. Kiritsis,et al. Horava-Lifshitz Cosmology , 2009, 0904.1334.
[9] G. Calcagni. Cosmology of the Lifshitz universe , 2009, 0904.0829.
[10] Christoph Rahmede,et al. Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.
[11] J. Jurkiewicz,et al. Nonperturbative quantum de Sitter universe , 2008, 0807.4481.
[12] A. Görlich,et al. Planckian birth of a quantum de sitter universe. , 2007, Physical review letters.
[13] M. Niedermaier,et al. The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.
[14] Ruth M. Williams,et al. Nonlocal effective gravitational field equations and the running of Newton's constant G , 2005, hep-th/0507017.
[15] J. Jurkiewicz,et al. Reconstructing the universe , 2005, hep-th/0505154.
[16] J. Jurkiewicz,et al. Semiclassical universe from first principles , 2004, hep-th/0411152.
[17] Copenhagen,et al. Emergence of a 4D world from causal quantum gravity. , 2004, Physical review letters.
[18] D. Litim. Fixed points of quantum gravity. , 2003, Physical review letters.
[19] J. Jurkiewicz,et al. Dynamically Triangulating Lorentzian Quantum Gravity , 2001, hep-th/0105267.
[20] Ambjorn,et al. Nonperturbative lorentzian path integral for gravity , 2000, Physical review letters.
[21] R. Loll,et al. The relation between Euclidean and Lorentzian 2D quantum gravity , 1999, hep-th/9912267.
[22] J. Ambjorn,et al. Non-perturbative Lorentzian Quantum Gravity, Causality and Topology Change , 1998, hep-th/9805108.
[23] J. Ambjorn,et al. Quantum geometry of 2D gravity coupled to unitary matter , 1997, hep-lat/9701006.
[24] M. Ninomiya,et al. Renormalizability of quantum gravity near two dimensions , 1995, hep-th/9511217.
[25] J. Jurkiewicz,et al. On the fractal structure of two-dimensional quantum gravity , 1995, hep-lat/9507014.
[26] J. Ambjorn,et al. Scaling in quantum gravity , 1995, hep-th/9501049.
[27] M. Ninomiya,et al. Conformal invariance and renormalization group in quantum gravity near two dimensions , 1994, hep-th/9404171.
[28] M. Ninomiya,et al. Ultraviolet stable fixed point and scaling relations in (2 + ϵ)-dimensional quantum gravity☆ , 1993, hep-th/9303123.
[29] M. Ninomiya,et al. Scaling exponents in quantum gravity near two dimensions , 1992, hep-th/9206081.
[30] Masao Ninomiya,et al. Renormalization Group and Quantum Gravity , 1990 .
[31] J. Hartle,et al. Wave Function of the Universe , 1983 .
[32] C. Teitelboim. Causality Versus Gauge Invariance in Quantum Gravity and Supergravity , 1983 .
[33] T. Regge. General relativity without coordinates , 1961 .