Introducing molecular electronics

Abstract Molecular electronics and optoelectronics depend for their existence on the molecular organization of space. The fundamental mechanisms underlying the rich phenomena that have been discovered in these areas arise from mixing of electronic energies in the molecule with external, macroscopic structures. Mechanisms of charge injection and transport, and their manifestations in the physical properties of molecular electronic junctions, are discussed. Major questions that remain unresolved are placed in the contexts of fundamental understanding and device considerations. In the natural world, molecules are used for many purposes. Using molecule-based materials for electronics, sensing, and optoelectronics is a new endeavor, called molecular electronics, and the subject both of riveting new research and substantial popular press interest.

[1]  Kwan S. Kwok,et al.  Moletronics: future electronics , 2002 .

[2]  Anthony K. Felts,et al.  Multilevel Redfield Treatment of Bridge-Mediated Long-Range Electron Transfer: A Mechanism for Anomalous Distance Dependence , 1995 .

[3]  Supriyo Datta,et al.  Unified description of molecular conduction: From molecules to metallic wires , 2001 .

[4]  D. Vuillaume,et al.  Electronic structure of a heterostructure of an alkylsiloxane self-assembled monolayer on silicon , 1998 .

[5]  Martin R. Bryce,et al.  An introduction to molecular electronics , 1995 .

[6]  J. N. Russell,et al.  Cycloaddition chemistry of organic molecules with semiconductor surfaces. , 2000, Accounts of chemical research.

[7]  K. W. Hipps,et al.  An Experimental Study of the Line Shape of Orbital Mediated Tunneling Bands Seen in Inelastic Electron Tunneling Spectroscopy , 2000 .

[8]  M. Ratner,et al.  Electron Transfer Rates in Bridged Molecular Systems 2. A Steady-State Analysis of Coherent Tunneling and Thermal Transitions† , 2000 .

[9]  H. Dai,et al.  Modulated chemical doping of individual carbon nanotubes. , 2000, Science.

[10]  Rudolph A. Marcus,et al.  Chemical and Electrochemical Electron-Transfer Theory , 1964 .

[11]  F. L. Carter Molecular Electronic Devices II , 1987 .

[12]  A. Aviram,et al.  Conference on Molecular Electronics: Science and Technology, Puerto Rico, 14-18 December 1997: Preface , 1998 .

[13]  Noel S. Hush,et al.  Formalism, analytical model, and a priori Green's-function-based calculations of the current-voltage characteristics of molecular wires , 2000 .

[14]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[15]  O. Chauvet,et al.  Electronic properties of aligned carbon nanotubes , 1997 .

[16]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[17]  A. Nitzan,et al.  Electron transmission through molecules and molecular interfaces. , 2001, Annual review of physical chemistry.

[18]  Jason D. Monnell,et al.  Conductance Switching in Single Molecules Through Conformational Changes , 2001, Science.

[19]  Christian Joachim,et al.  CONDUCTANCE AND TRANSPARENCE OF LONG MOLECULAR WIRES , 1997 .

[20]  M. Ratner,et al.  Electron Transfer in Molecules and Molecular Wires: Geometry Dependence, Coherent Transfer, and Control , 2007 .

[21]  Tao Xu,et al.  Electrical Rectification by a Monolayer of Hexadecylquinolinium Tricyanoquinodimethanide Measured between Macroscopic Gold Electrodes , 2001 .

[22]  S. Bent,et al.  A Theoretical Study of the Structure and Thermochemistry of 1,3-Butadiene on the Ge/Si(100)-2 × 1 Surface , 2000 .

[23]  R. Wolkow Controlled molecular adsorption on silicon: laying a foundation for molecular devices. , 1999, Annual review of physical chemistry.

[24]  J. Seminario,et al.  A theoretical analysis of metal-molecule contacts. , 2001, Journal of the American Chemical Society.

[25]  P. Rossky,et al.  FROM MOLECULES TO MATERIALS : CURRENT TRENDS AND FUTURE DIRECTIONS , 1998 .

[26]  D. M. Newns Self-Consistent Model of Hydrogen Chemisorption , 1969 .

[27]  John K. Tomfohr,et al.  Reproducible Measurement of Single-Molecule Conductivity , 2001, Science.

[28]  M. Ratner,et al.  Semiclassical Theory for Tunneling of Electrons Interacting with Media , 2001 .

[29]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[30]  A. Heeger Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials* , 2001 .

[31]  C. Kergueris,et al.  Electron transport through a metal-molecule-metal junction , 1999, cond-mat/9904037.

[32]  Tian,et al.  Electronic conduction through organic molecules. , 1996, Physical review. B, Condensed matter.

[33]  Vladimiro Mujica,et al.  The injecting energy at molecule/metal interfaces: Implications for conductance of molecular junctions from an ab initio molecular description , 1999 .

[34]  R. Landauer Spatial variation of currents and fields due to localized scatterers in metallic conduction , 1988 .

[35]  Roland Wiesendanger,et al.  Scanning Probe Microscopy and Spectroscopy: Related scanning probe methods , 1994 .

[36]  Jian Wang,et al.  Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C 60 device , 2000, cond-mat/0007176.

[37]  M. Reed,et al.  Conductance of a Molecular Junction , 1997 .

[38]  C. J. Chen,et al.  Introduction to Scanning Tunneling Microscopy , 1993 .

[39]  Ballistic hole transport in pentacene with a mean free path exceeding 30 μm , 2001 .

[40]  Eldon Emberly,et al.  Theory of Electrical Conduction Through a Molecule , 1998 .

[41]  Lang,et al.  First-principles calculation of transport properties of a molecular device , 2000, Physical review letters.

[42]  G. Whitesides,et al.  Self-assembled monolayers and multilayers of conjugated thiols, α,ω-dithiols, and thioacetyl-containing adsorbates. Understanding attachments between potential molecular wires and gold surfaces , 1995 .

[43]  J. Gimzewski,et al.  Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.

[44]  R. Murray,et al.  Electroactive Polymers and Macromolecular Electronics , 1986, Science.

[45]  M. Ratner,et al.  Conformationally Gated Rate Processes in Biological Macromolecules , 2001 .

[46]  Eldon Emberly,et al.  Electrical conductance of molecular wires , 1999 .

[47]  T. D. Dunbar,et al.  Evolution of Strategies for Self‐Assembly and Hookup of Molecule‐Based Devices , 1998 .

[48]  Mathieu Kemp,et al.  Conductance of Molecular Wires: Influence of Molecule−Electrode Binding , 1999 .

[49]  Robert R. Birge,et al.  All-optical logic gates using bacteriorhodopsin films , 2000 .

[50]  Mathieu Kemp,et al.  Molecular Wires: Charge Transport, Mechanisms, and Control , 1998 .

[51]  M. Ratner,et al.  Tunneling Time for Electron Transfer Reactions , 2000 .

[52]  R. Silbey,et al.  Conformational disorder of conjugated polymers: Implications for optical properties , 1996 .

[53]  P. Avouris,et al.  Carbon Nanotube Inter- and Intramolecular Logic Gates , 2001 .

[54]  M. Ratner,et al.  Resistivity mechanisms in phthalocyanine-based linear-chain and polymeric conductors: variation of bandwidth with geometry , 1985 .

[55]  Christian Joachim,et al.  Atomic and molecular wires , 1997 .

[56]  S. Mukamel,et al.  SUPEREXCHANGE VERSUS SEQUENTIAL LONG RANGE ELECTRON TRANSFER ; DENSITY MATRIX PATHWAYS IN LIOUVILLE SPACE , 1995 .

[57]  A. Fisher,et al.  Quantum Inelastic Conductance through Molecular Wires , 1999, cond-mat/9903320.

[58]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[59]  M. Reed Prospects for Molecular-Scale Electronics , 2001 .

[60]  Andrés,et al.  Room-temperature Coulomb blockade from a self-assembled molecular nanostructure. , 1995, Physical review. B, Condensed matter.

[61]  M. Reed,et al.  The Electrical Measurement of Molecular Junctions , 1998 .

[62]  J F Stoddart,et al.  Switching devices based on interlocked molecules. , 2001, Accounts of chemical research.

[63]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[64]  Wilson Ho,et al.  Steric Turnoff of Vibrationally Mediated Negative Differential Resistance in a Single Molecule. , 2001, Angewandte Chemie.

[65]  P. Barbara,et al.  Contemporary Issues in Electron Transfer Research , 1996 .

[66]  E. Conwell Band transport in quasi-one-dimensional conductors in the phonon-scattering regime and application to tetrathiofulvalene-tetracyanoquinodimethane , 1980 .

[67]  Eldon Emberly,et al.  Theoretical study of electrical conduction through a molecule connected to metallic nanocontacts , 1998 .

[68]  S. Datta,et al.  Charge transfer and “band lineup” in molecular electronic devices: A chemical and numerical interpretation , 2001 .

[69]  C. Mirkin,et al.  Scanometric DNA array detection with nanoparticle probes. , 2000, Science.

[70]  R. Wagner,et al.  Quenching of porphyrin excited states by adjacent or distant porphyrin cation radicals in molecular arrays , 2001 .

[71]  Meir,et al.  Landauer formula for the current through an interacting electron region. , 1992, Physical review letters.

[72]  R. Hamers,et al.  Bonding of Nitrogen-Containing Organic Molecules to the Silicon(001) Surface: The Role of Aromaticity† , 2001 .

[73]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[74]  Yi Luo,et al.  A quantum chemistry approach for current–voltage characterization of molecular junctions , 2001 .

[75]  C. Dekker Carbon nanotubes as molecular quantum wires , 1999 .

[76]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[77]  Hans Kuhn,et al.  Tunneling through Fatty Acid Salt Monolayers , 1971 .

[78]  J. Gähde,et al.  Conjugated Polymers and Related Materials , 1994 .

[79]  R. P. Andres,et al.  Interface and contact structures for nanoelectronic devices using assemblies of metallic nanoclusters, conjugated organic molecules and chemically stable semiconductor layers , 2000 .

[80]  J. Gimzewski,et al.  An electromechanical amplifier using a single molecule , 1997 .