Contrast-enhanced ultrasound imaging detects intraplaque neovascularization in an experimental model of atherosclerosis.

OBJECTIVES The aims of this study were to investigate the feasibility of contrast-enhanced ultrasound (CEU) imaging for in vivo visualization of intraplaque neovascularization and to correlate the in vivo observations with histological assessment of neovessel density and plaque composition in an experimental animal model of advanced atherosclerosis. BACKGROUND Recent evidence has linked plaque angiogenesis with enhanced atherosclerotic plaque progression and vulnerability. Increased neovascularization has been detected in ruptured human lesions and is associated with clinical manifestations of plaque rupture. METHODS Advanced aortic atherosclerosis was induced in New Zealand white rabbits (n = 21; high cholesterol-rich diet/double-balloon aortic denudation). Animals underwent standard and CEU imaging at the end of the atherosclerosis induction period. Six age-matched animals served as control subjects. Within 24 h, animals were euthanized and aortas processed for histopathological evaluation of plaque composition and neovascularization. Imaged plaques were classified as contrast enhanced (CE) positive or CE negative, according to their contrast enhancement on CEU imaging. The lesions were also classified as class III (predominantly echogenic) or class II (predominantly echolucent), according to their echogenicity on non-CEU images. RESULTS No contrast enhancement was observed in control animals. In atherosclerotic animals, class III lesions showed an increased contrast enhancement compared with class II lesions and CE-positive lesions showed greater neovascularization than CE-negative plaques. Macrophage density, but not smooth muscle cell density, was significantly higher in CE-positive than CE-negative lesions. As expected, class III lesions showed increased macrophage density compared with class II plaques. Intraplaque neovessel density at histology was significantly higher in CE-positive than in CE-negative lesions. Class III plaques showed a significantly higher neovessel density compared with class II lesions. A strong correlation between intraplaque neovessels and contrast enhancement was found. CONCLUSIONS CEU imaging is a feasible noninvasive imaging modality to evaluate intraplaque neovascularization. A noninvasive imaging modality to assess lesion neovascularization could be of great importance to identify vascularized, "high-risk" lesions before rupture.

[1]  Simon C Watkins,et al.  Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. , 1998, Circulation.

[2]  R. Virmani,et al.  Pathology of the Vulnerable Plaque , 2006 .

[3]  Gemma Vilahur,et al.  Rapid change in plaque size, composition, and molecular footprint after recombinant apolipoprotein A-I Milano (ETC-216) administration: magnetic resonance imaging study in an experimental model of atherosclerosis. , 2008, Journal of the American College of Cardiology.

[4]  Mark M. Kockx,et al.  Phagocytosis and Macrophage Activation Associated With Hemorrhagic Microvessels in Human Atherosclerosis , 2003, Arteriosclerosis, thrombosis, and vascular biology.

[5]  S. Kaul,et al.  Molecular Imaging of Endothelial Vascular Cell Adhesion Molecule-1 Expression and Inflammatory Cell Recruitment During Vasculogenesis and Ischemia-Mediated Arteriogenesis , 2008, Circulation.

[6]  Aloke V. Finn,et al.  Atherosclerotic Plaque Progression and Vulnerability to Rupture: Angiogenesis as a Source of Intraplaque Hemorrhage , 2005, Arteriosclerosis, thrombosis, and vascular biology.

[7]  J. Lindner,et al.  Molecular Imaging of Inflammation in Atherosclerosis With Targeted Ultrasound Detection of Vascular Cell Adhesion Molecule-1 , 2007, Circulation.

[8]  S. Feinstein,et al.  Contrast ultrasound imaging of the carotid artery vasa vasorum and atherosclerotic plaque neovascularization. , 2006, Journal of the American College of Cardiology.

[9]  R. Mofidi,et al.  Association between plaque instability, angiogenesis and symptomatic carotid occlusive disease , 2001, The British journal of surgery.

[10]  V. Fuster,et al.  Fenofibrate induces plaque regression in hypercholesterolemic atherosclerotic rabbits: in vivo demonstration by high-resolution MRI. , 2007, Atherosclerosis.

[11]  Juan J. Badimon,et al.  Plaque Neovascularization Is Increased in Ruptured Atherosclerotic Lesions of Human Aorta: Implications for Plaque Vulnerability , 2004, Circulation.

[12]  J. Lindner,et al.  Contrast ultrasound assessment of angiogenesis by perfusion and molecular imaging , 2005, Expert review of molecular diagnostics.

[13]  Gieri Cathomas,et al.  Arterial Neovascularization and Inflammation in Vulnerable Patients: Early and Late Signs of Symptomatic Atherosclerosis , 2004, Circulation.

[14]  Steven B. Feinstein,et al.  Contrast-enhanced ultrasound imaging of atherosclerotic carotid plaque neovascularization: a new surrogate marker of atherosclerosis? , 2007, Vascular medicine.

[15]  D. Woolley,et al.  Local neovascularization and cellular composition within vulnerable regions of atherosclerotic plaques of human carotid arteries , 1999, The Journal of pathology.

[16]  A. Naylor,et al.  Angiogenesis and the atherosclerotic carotid plaque: association between symptomatology and plaque morphology , 1999, Journal of vascular surgery.

[17]  V. Fuster,et al.  Macrophage Infiltration in Acute Coronary Syndromes: Implications for Plaque Rupture , 1994, Circulation.

[18]  R. Holloway,et al.  Carotid endarterectomy—An evidence-based review , 2005, Neurology.

[19]  Roberto Chiesa,et al.  Contrast-enhanced ultrasound imaging of periadventitial vasa vasorum in human carotid arteries. , 2009, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology.

[20]  A. Evangelista,et al.  Specific targeting of human inflamed endothelium and in situ vascular tissue transfection by the use of ultrasound contrast agents. , 2009, JACC. Cardiovascular imaging.

[21]  Zahi A Fayad,et al.  Progression and Regression of Atherosclerotic Lesions: Monitoring With Serial Noninvasive Magnetic Resonance Imaging , 2002, Circulation.

[22]  Gian Luigi Lenzi,et al.  Detection of Carotid Adventitial Vasa Vasorum and Plaque Vascularization With Ultrasound Cadence Contrast Pulse Sequencing Technique and Echo-Contrast Agent , 2007, Stroke.

[23]  K. Moulton Plaque angiogenesis: its functions and regulation. , 2002, Cold Spring Harbor symposia on quantitative biology.

[24]  Roberto Chiesa,et al.  Contrast-enhanced ultrasound imaging of intraplaque neovascularization in carotid arteries: correlation with histology and plaque echogenicity. , 2008, Journal of the American College of Cardiology.

[25]  S. Feinstein,et al.  The powerful microbubble: from bench to bedside, from intravascular indicator to therapeutic delivery system, and beyond. , 2004, American journal of physiology. Heart and circulatory physiology.

[26]  Dan Adam,et al.  Contrast-enhanced ultrasound imaging of the vasa vasorum: from early atherosclerosis to the identification of unstable plaques. , 2010, JACC. Cardiovascular imaging.

[27]  J. Toole,et al.  Guidelines for carotid endarterectomy: a statement for healthcare professionals from a Special Writing Group of the Stroke Council, American Heart Association. , 1998, Circulation.

[28]  Renu Virmani,et al.  Intraplaque hemorrhage and progression of coronary atheroma. , 2003, The New England journal of medicine.

[29]  Simon Capewell,et al.  Coronary heart disease mortality among young adults in the U.S. from 1980 through 2002: concealed leveling of mortality rates. , 2007, Journal of the American College of Cardiology.

[30]  R. Virmani,et al.  Plaque rupture and sudden death related to exertion in men with coronary artery disease. , 1999, JAMA.

[31]  P. Carmeliet Angiogenesis in health and disease , 2003, Nature Medicine.