GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models

Spatial statistics is a growing discipline providing important analytical techniques in a wide range of disciplines in the natural and social sciences. In the R package GWmodel we present techniques from a particular branch of spatial statistics, termed geographically weighted (GW) models. GW models suit situations when data are not described well by some global model, but where there are spatial regions where a suitably localized calibration provides a better description. The approach uses a moving window weighting technique, where localized models are found at target locations. Outputs are mapped to provide a useful exploratory tool into the nature of the data spatial heterogeneity. Currently, GWmodel includes functions for: GW summary statistics, GW principal components analysis, GW regression, and GW discriminant analysis; some of which are provided in basic and robust forms.

[1]  S. Fotheringham,et al.  Geographically weighted summary statistics — aframework for localised exploratory data analysis , 2002 .

[2]  David C. Wheeler,et al.  An assessment of coefficient accuracy in linear regression models with spatially varying coefficients , 2007, J. Geogr. Syst..

[3]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[4]  Dennis M. Gorman,et al.  Quantifying geographic variations in associations between alcohol distribution and violence: a comparison of geographically weighted regression and spatially varying coefficient models , 2007 .

[5]  A. Stewart Fotheringham,et al.  Robust Geographically Weighted Regression: A Technique for Quantifying Spatial Relationships Between Freshwater Acidification Critical Loads and Catchment Attributes , 2010 .

[6]  Chris Brunsdon,et al.  Geographically Weighted Regression: The Analysis of Spatially Varying Relationships , 2002 .

[7]  Jason Dykes,et al.  Geographically Weighted Visualization: Interactive Graphics for Scale-Varying Exploratory Analysis , 2007, IEEE Transactions on Visualization and Computer Graphics.

[8]  G. Monette,et al.  Generalized Collinearity Diagnostics , 1992 .

[9]  David Wheeler,et al.  Multicollinearity and correlation among local regression coefficients in geographically weighted regression , 2005, J. Geogr. Syst..

[10]  Steven Farber,et al.  Moving Window Approaches for Hedonic Price Estimation: An Empirical Comparison of Modelling Techniques , 2008 .

[11]  A. Stewart Fotheringham,et al.  Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity , 2010 .

[12]  A. Stewart Fotheringham,et al.  Links, comparisons and extensions of the geographically weighted regression model when used as a spatial predictor , 2011 .

[13]  Yasushi Asami,et al.  An empirical evaluation of spatial regression models , 2006, Comput. Geosci..

[14]  D. Wheeler Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted Regression , 2007 .

[15]  T. Nakaya,et al.  Semiparametric geographically weighted generalisedlinear modelling in GWR 4.0 , 2009 .

[16]  A. Páez,et al.  Geographically Weighted Regression , 2021, Handbook of Regional Science.

[17]  Tze-San Lee Optimum Ridge Parameter Selection , 1987 .

[18]  Martin Charlton,et al.  Geographically weighted principal components analysis , 2011, Int. J. Geogr. Inf. Sci..

[19]  Martin Charlton,et al.  Geographically weighted discriminant analysis , 2007 .

[20]  Martin Charlton,et al.  Moving window kriging with geographically weighted variograms , 2010 .

[21]  David C. Wheeler,et al.  Comparing spatially varying coefficient models: a case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests , 2009, J. Geogr. Syst..

[22]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[23]  David A. Belsley,et al.  Regression Analysis and its Application: A Data-Oriented Approach.@@@Applied Linear Regression.@@@Regression Diagnostics: Identifying Influential Data and Sources of Collinearity , 1981 .

[24]  S. Fotheringham,et al.  Geographically Weighted Regression , 1998 .

[25]  Christopher D. Lloyd,et al.  Nonstationary models for exploring and mapping monthly precipitation in the United Kingdom , 2009 .

[26]  Kelvyn Jones,et al.  Using multilevel models to model heterogeneity: potential and pitfalls , 2010 .

[27]  Martin Charlton,et al.  A Mark 1 Geographical Analysis Machine for the automated analysis of point data sets , 1987, Int. J. Geogr. Inf. Sci..

[28]  Stephen A Matthews,et al.  Geographically Weighted Quantile Regression (GWQR): An Application to U.S. Mortality Data. , 2012, Geographical analysis.

[29]  Christopher D. Lloyd,et al.  Analysing population characteristics using geographically weighted principal components analysis: A case study of Northern Ireland in 2001 , 2010, Comput. Environ. Urban Syst..

[30]  Urska Demsar,et al.  Using geovisual analytics to compare the performance of geographically weighted discriminant analysis versus its global counterpart, linear discriminant analysis , 2013, Int. J. Geogr. Inf. Sci..

[31]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[32]  Renato M. Assunção,et al.  Space varying coefficient models for small area data , 2003 .

[33]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[34]  Paul Harris,et al.  Exploring spatial variation and spatial relationships in a freshwater acidification critical load data set for Great Britain using geographically weighted summary statistics , 2010, Comput. Geosci..

[35]  A. Stewart Fotheringham,et al.  Local Forms of Spatial Analysis , 2010 .

[36]  David C. Wheeler,et al.  Simultaneous Coefficient Penalization and Model Selection in Geographically Weighted Regression: The Geographically Weighted Lasso , 2009 .

[37]  M. Goodchild The Validity and Usefulness of Laws in Geographic Information Science and Geography , 2004 .

[38]  Sanford Weisberg,et al.  An R Companion to Applied Regression , 2010 .

[39]  Martin Charlton,et al.  The Use of Geographically Weighted Regression for Spatial Prediction: An Evaluation of Models Using Simulated Data Sets , 2010 .

[40]  Andrew O. Finley,et al.  Comparing spatially‐varying coefficients models for analysis of ecological data with non‐stationary and anisotropic residual dependence , 2011 .

[41]  Steven Farber,et al.  A Simulation-Based Study of Geographically Weighted Regression as a Method for Investigating Spatially Varying Relationships , 2011 .

[42]  C. F. Sirmans,et al.  Spatial Modeling With Spatially Varying Coefficient Processes , 2003 .

[43]  Yan Kestens,et al.  Heterogeneity in hedonic modelling of house prices: looking at buyers’ household profiles , 2006, J. Geogr. Syst..

[44]  Paul Harris,et al.  Estimating Freshwater Acidification Critical Load Exceedance Data for Great Britain Using Space-Varying Relationship Models , 2011 .

[45]  Christopher Bitter,et al.  Incorporating spatial variation in housing attribute prices: a comparison of geographically weighted regression and the spatial expansion method , 2007, J. Geogr. Syst..

[46]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[47]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[48]  Changlin Mei,et al.  Local least absolute deviation estimation of spatially varying coefficient models: robust geographically weighted regression approaches , 2011, Int. J. Geogr. Inf. Sci..

[49]  Yee Leung,et al.  Statistical Tests for Spatial Nonstationarity Based on the Geographically Weighted Regression Model , 2000 .

[50]  Daniel A. Griffith,et al.  Spatial-Filtering-Based Contributions to a Critique of Geographically Weighted Regression (GWR) , 2008 .

[51]  Martin Charlton,et al.  Living with Collinearity in Local Regression Models , 2012 .

[52]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[53]  Clifford M. Hurvich,et al.  Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion , 1998 .

[54]  P. Rousseeuw Multivariate estimation with high breakdown point , 1985 .

[55]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .

[56]  Noel A Cressie,et al.  The Many Faces of Spatial Prediction , 1989 .

[57]  T. Rangel,et al.  SAM: a comprehensive application for Spatial Analysis in Macroecology , 2010 .

[58]  Martin Charlton,et al.  Geographically weighted methods and their use in network re-designs for environmental monitoring , 2014, Stochastic Environmental Research and Risk Assessment.

[59]  S. Fotheringham,et al.  Geographically weighted regression : modelling spatial non-stationarity , 1998 .

[60]  Debarchana Ghosh,et al.  Robust Principal Component Analysis and Geographically Weighted Regression : Urbanization in the Twin Cities Metropolitan Area ( TCMA ) , 2007 .

[61]  Peter Filzmoser,et al.  Introduction to Multivariate Statistical Analysis in Chemometrics , 2009 .

[62]  A S Fotheringham,et al.  Geographically weighted Poisson regression for disease association mapping , 2005, Statistics in medicine.

[63]  Martin Charlton,et al.  Geographically Weighted Regression Using a Non-Euclidean Distance Metric with a Study on London House Price Data , 2011 .

[64]  C. Lloyd,et al.  Analysing Commuting Using Local Regression Techniques: Scale, Sensitivity, and Geographical Patterning , 2005 .

[65]  Emilio Casetti,et al.  Generating Models by the Expansion Method: Applications to Geographical Research* , 2010 .

[66]  M. Charlton,et al.  Some Notes on Parametric Significance Tests for Geographically Weighted Regression , 1999 .

[67]  David C. Wheeler Visualizing and Diagnosing Coefficients from Geographically Weighted Regression Models , 2010 .

[68]  Edzer J. Pebesma,et al.  Multivariable geostatistics in S: the gstat package , 2004, Comput. Geosci..

[69]  P. Atkinson,et al.  Exploring the Relations Between Riverbank Erosion and Geomorphological Controls Using Geographically Weighted Logistic Regression , 2002 .

[70]  Binbin Lu,et al.  Geographically Weighted Regression using a non-euclidean distance metric with simulation data , 2012, 2012 First International Conference on Agro- Geoinformatics (Agro-Geoinformatics).

[71]  R. O’Brien,et al.  A Caution Regarding Rules of Thumb for Variance Inflation Factors , 2007 .

[72]  Arthur E. Hoerl,et al.  Application of ridge analysis to regression problems , 1962 .

[73]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .

[74]  Martin Charlton,et al.  Multivariate Spatial Outlier Detection Using Robust Geographically Weighted Methods , 2013, Mathematical Geosciences.