Nonholonomic Control and Gauge Theory

We present a dictionary between gauge theory and control theory. This is useful for problems involving the control of the orientations of deformable bodies (robots, gymnasts) by means of shape deformations. In the last section we present some ideas on the stabilization of nonholonomic control systems, where the objective is a given submanifold instead of a single point.

[1]  Luther Pfahler Eisenhart,et al.  Introduction to Differential Geometry , 2015 .

[2]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[3]  Richard Montgomery,et al.  Optimal Control of Deformable Bodies and Its Relation to Gauge Theory , 1991 .

[4]  Wei-Liang Chow Über Systeme von liearren partiellen Differentialgleichungen erster Ordnung , 1940 .

[5]  A. Vershik,et al.  Nonholonomic manifolds and nilpotent analysis , 1988 .

[6]  T. Kane,et al.  A dynamical explanation of the falling cat phenomenon , 1969 .

[7]  Mahmut Reyhanoglu,et al.  Control and stabilization of nonholonomic Caplygin dynamic systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[8]  Ursula Hamenstädt,et al.  Some regularity theorems for Carnot-Carathéodory metrics , 1990 .

[9]  R. Strichartz Sub-Riemannian geometry , 1986 .

[10]  C. Rayner The exponential map for the Lagrange problem on differentiable manifolds , 1967, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[11]  F. Wilczek,et al.  Efficiencies of self-propulsion at low Reynolds number , 1989, Journal of Fluid Mechanics.

[12]  L. Young Lectures on the Calculus of Variations and Optimal Control Theory , 1980 .

[13]  Constantin Carathéodory,et al.  Calculus of variations and partial differential equations of the first order , 1965 .

[14]  R. Montgomery Isoholonomic problems and some applications , 1990 .

[15]  Wei-Liang Chow Über Systeme von linearen partiellen Differential-gleichungen erster Ordnung , 1941 .

[16]  A. Guichardet,et al.  On rotation and vibration motions of molecules , 1984 .

[17]  D. Bleecker,et al.  Gauge theory and variational principles , 1981 .

[18]  Robert Hermann,et al.  Geodesics of singular Riemannian metrics , 1973 .

[19]  N. Steenrod The Topology of Fibre Bundles. (PMS-14) , 1951 .

[20]  S. Chern Complex manifolds without potential theory , 1979 .

[21]  F. Wilczek,et al.  Self-propulsion at low Reynolds number. , 1987, Physical review letters.