Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas

[1]  R. Guillevin,et al.  Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas , 2017, Reviews in the neurosciences.

[2]  Y. Lecarpentier,et al.  Thermodynamic Aspects and Reprogramming Cellular Energy Metabolism during the Fibrosis Process , 2017, International journal of molecular sciences.

[3]  R. Guillevin,et al.  PPARγ agonists: Potential treatments for exudative age-related macular degeneration. , 2017, Life sciences.

[4]  Y. Lecarpentier,et al.  The Myofibroblast: TGFβ-1, A Conductor which Plays a Key Role in Fibrosis by Regulating the Balance between PPARγ and the Canonical WNT Pathway , 2017 .

[5]  A. Horiguchi,et al.  STAT3 inhibition by WP1066 suppresses the growth and invasiveness of bladder cancer cells. , 2017, Oncology reports.

[6]  R. Guillevin,et al.  Effects of cannabidiol interactions with Wnt/&bgr;-catenin pathway and PPAR&ggr; on oxidative stress and neuroinflammation in Alzheimer's disease , 2017, Acta biochimica et biophysica Sinica.

[7]  R. Guillevin,et al.  Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis , 2017, Oncotarget.

[8]  C. Zhang,et al.  Inhibition of Bevacizumab-induced Epithelial-Mesenchymal Transition by BATF2 Overexpression Involves the Suppression of Wnt/β-Catenin Signaling in Glioblastoma Cells. , 2017, Anticancer research.

[9]  Sunit Das,et al.  Aberrantly activated Cox-2 and Wnt signaling interact to maintain cancer stem cells in glioblastoma , 2017, Oncotarget.

[10]  R. Guillevin,et al.  Aerobic Glycolysis Hypothesis Through WNT/Beta-Catenin Pathway in Exudative Age-Related Macular Degeneration , 2017, Journal of Molecular Neuroscience.

[11]  R. Guillevin,et al.  Thermodynamics in Gliomas: Interactions between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma , 2017, Front. Physiol..

[12]  Y. Lecarpentier,et al.  Thermodynamics in cancers: opposing interactions between PPAR gamma and the canonical WNT/beta-catenin pathway , 2017, Clinical and Translational Medicine.

[13]  X. Bian,et al.  Promoting oligodendroglial-oriented differentiation of glioma stem cell: a repurposing of quetiapine for the treatment of malignant glioma , 2017, Oncotarget.

[14]  Y. Lecarpentier,et al.  Interactions between PPAR Gamma and the Canonical Wnt/Beta-Catenin Pathway in Type 2 Diabetes and Colon Cancer , 2017, PPAR research.

[15]  J. Pedraza-Chaverri,et al.  Sulforaphane induces differential modulation of mitochondrial biogenesis and dynamics in normal cells and tumor cells. , 2017, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[16]  Jianxiong Jiang,et al.  Cyclooxygenase-2 in glioblastoma multiforme. , 2017, Drug discovery today.

[17]  Y. Lecarpentier,et al.  Alzheimer Disease: Crosstalk between the Canonical Wnt/Beta-Catenin Pathway and PPARs Alpha and Gamma , 2016, Front. Neurosci..

[18]  Yong Peng,et al.  SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin , 2016, Nature Communications.

[19]  Y. Lecarpentier,et al.  Opposite Interplay between PPAR Gamma and Canonical Wnt/Beta-Catenin Pathway in Amyotrophic Lateral Sclerosis , 2016, Front. Neurol..

[20]  A. Bentivegna,et al.  Pioglitazone Effect on Glioma Stem Cell Lines: Really a Promising Drug Therapy for Glioblastoma? , 2016, PPAR research.

[21]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[22]  R. Graham,et al.  Investigating the therapeutic role and molecular biology of curcumin as a treatment for glioblastoma , 2016, Therapeutic advances in medical oncology.

[23]  M. Mazidi,et al.  Potential effects of curcumin on peroxisome proliferator-activated receptor-γ in vitro and in vivo. , 2016, World journal of methodology.

[24]  P. Luthra,et al.  Prospective of Curcumin, a Pleiotropic Signalling Molecule from Curcuma longa in the Treatment of Glioblastoma , 2016 .

[25]  B. Yamini,et al.  Nuclear factor-κB in glioblastoma: insights into regulators and targeted therapy. , 2016, Neuro-oncology.

[26]  L. Bencini,et al.  Peroxisome proliferator activated receptors at the crossroad of obesity, diabetes, and pancreatic cancer. , 2016, World journal of gastroenterology.

[27]  J. Varga,et al.  Adiponectin inhibits Wnt co-receptor, Lrp6, phosphorylation and β-catenin signaling. , 2016, Biochemical and biophysical research communications.

[28]  Ș. Purcaru,et al.  New perspectives in glioblastoma antiangiogenic therapy , 2015, Contemporary oncology.

[29]  A. Melcarne,et al.  WNT/β-catenin Signaling Pathway and Downstream Modulators in Low- and High-grade Glioma. , 2016, Cancer genomics & proteomics.

[30]  Laura A. Sordillo,et al.  Curcumin for the Treatment of Glioblastoma. , 2015, Anticancer research.

[31]  J. Morgado-Díaz,et al.  LPA Induces Colon Cancer Cell Proliferation through a Cooperation between the ROCK and STAT-3 Pathways , 2015, PloS one.

[32]  Q. Pan,et al.  Sulforaphane enhances temozolomide‐induced apoptosis because of down‐regulation of miR‐21 via Wnt/β‐catenin signaling in glioblastoma , 2015, Journal of neurochemistry.

[33]  Yang Hj,et al.  Olanzapine inhibits the proliferation and induces the differentiation of glioma stem-like cells through modulating the Wnt signaling pathway in vitro. , 2015 .

[34]  K. Watabe,et al.  Mechanisms regulating glioma invasion. , 2015, Cancer letters.

[35]  M. Cuello,et al.  Leptin stimulates migration and invasion and maintains cancer stem-like properties in ovarian cancer cells: an explanation for poor outcomes in obese women , 2015, Oncotarget.

[36]  Yan Shi,et al.  PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop , 2015, Oncotarget.

[37]  T. Jiang,et al.  ICAT inhibits glioblastoma cell proliferation by suppressing Wnt/β-catenin activity. , 2015, Cancer letters.

[38]  Tuo Deng,et al.  Mechanisms of peroxisome proliferator activated receptor γ regulation by non-steroidal anti-inflammatory drugs , 2015, Nuclear receptor signaling.

[39]  Y. Lecarpentier,et al.  Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction , 2014, Front. Physiol..

[40]  G. K. Gray,et al.  NF-κB and STAT3 in glioblastoma: therapeutic targets coming of age , 2014, Expert review of neurotherapeutics.

[41]  A. Di Costanzo,et al.  Adiponectin as Novel Regulator of Cell Proliferation in Human Glioblastoma , 2014, Journal of cellular physiology.

[42]  C. Thompson,et al.  Wnt meets Warburg: another piece in the puzzle? , 2014, The EMBO journal.

[43]  Y. Li,et al.  Curcumin suppresses cell proliferation through inhibition of the Wnt/β-catenin signaling pathway in medulloblastoma. , 2014, Oncology reports.

[44]  E. Gratton,et al.  Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer , 2014, The EMBO journal.

[45]  U. Vogel,et al.  Systematic review: interactions between aspirin, and other nonsteroidal anti-inflammatory drugs, and polymorphisms in relation to colorectal cancer , 2014, Alimentary pharmacology & therapeutics.

[46]  Dong-hua Han,et al.  RETRACTED ARTICLE: MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma , 2014, Tumor Biology.

[47]  Q. Shen,et al.  Transcription Factor STAT3 as a Novel Molecular Target for Cancer Prevention , 2014, Cancers.

[48]  Lei Shi,et al.  miR-125b inhibitor enhance the chemosensitivity of glioblastoma stem cells to temozolomide by targeting Bak1 , 2014, Tumor Biology.

[49]  Christopher M. Jackson,et al.  STAT3 Activation in Glioblastoma: Biochemical and Therapeutic Implications , 2014, Cancers.

[50]  C. Rommel,et al.  PI3K and cancer: lessons, challenges and opportunities , 2014, Nature Reviews Drug Discovery.

[51]  J. Grandis,et al.  STAT3 Oligonucleotide Inhibits Tumor Angiogenesis in Preclinical Models of Squamous Cell Carcinoma , 2014, PloS one.

[52]  J. Barnholtz-Sloan,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. , 2012, Neuro-oncology.

[53]  M. Sang,et al.  Leptin promotes metastasis by inducing an epithelial-mesenchymal transition in A549 lung cancer cells. , 2014, Oncology research.

[54]  G. Piazza,et al.  NSAIDs Inhibit Tumorigenesis, but How? , 2013, Clinical Cancer Research.

[55]  N. Inestrosa,et al.  Wnts in adult brain: from synaptic plasticity to cognitive deficiencies , 2013, Front. Cell. Neurosci..

[56]  M. Adeva,et al.  Enzymes involved in l-lactate metabolism in humans. , 2013, Mitochondrion.

[57]  G. Fantuzzi Adiponectin in inflammatory and immune-mediated diseases. , 2013, Cytokine.

[58]  Simon C Watkins,et al.  Chemoprevention of prostate cancer by d,l-sulforaphane is augmented by pharmacological inhibition of autophagy. , 2013, Cancer research.

[59]  K. Suk,et al.  Pyruvate Dehydrogenase Kinase as a Potential Therapeutic Target for Malignant Gliomas , 2013, Brain tumor research and treatment.

[60]  K. Airenne,et al.  Improved therapeutic effect on malignant glioma with adenoviral suicide gene therapy combined with temozolomide , 2013, Gene Therapy.

[61]  Duane D. Miller,et al.  Novel approaches to glioma drug design and drug screening , 2013, Expert opinion on drug discovery.

[62]  A. Shiras,et al.  Wnt3a mediated activation of Wnt/β-catenin signaling promotes tumor progression in glioblastoma , 2013, Molecular and Cellular Neuroscience.

[63]  Seong Who Kim,et al.  Promoter methylation of WNT inhibitory factor-1 and expression pattern of WNT/β-catenin pathway in human astrocytoma: pathologic and prognostic correlations , 2013, Modern Pathology.

[64]  A. Sami,et al.  Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: novel therapeutic agents and advances in understanding , 2013, Tumor Biology.

[65]  M. S. Mcmurtry,et al.  Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer , 2013, Oncogene.

[66]  S. Pluchino,et al.  Wnt your brain be inflamed? Yes, it Wnt! , 2013, Trends in molecular medicine.

[67]  Xing Wu,et al.  VEGF Promotes Proliferation of Human Glioblastoma Multiforme Stem-Like Cells through VEGF Receptor 2 , 2013, TheScientificWorldJournal.

[68]  H Zhao,et al.  The antiproliferative effect of indomethacin-loaded lipid-core nanocapsules in glioma cells is mediated by cell cycle regulation, differentiation, and the inhibition of survival pathways , 2013, International journal of nanomedicine.

[69]  S. Weiss,et al.  On-target JAK2/STAT3 inhibition slows disease progression in orthotopic xenografts of human glioblastoma brain tumor stem cells. , 2013, Neuro-oncology.

[70]  F. Domann,et al.  Differential activation of catalase expression and activity by PPAR agonists: Implications for astrocyte protection in anti-glioma therapy☆ , 2013, Redox biology.

[71]  M. VanSaun Molecular Pathways Molecular Pathways : Adiponectin and Leptin Signaling in Cancer , 2013 .

[72]  D. Schiffer,et al.  Temozolomide downregulates P-glycoprotein expression in glioblastoma stem cells by interfering with the Wnt3a/glycogen synthase-3 kinase/b-catenin pathway ChiaraRiganti,IrisChiaraSalaroglio,ValentinaCaldera,IvanaCampia,JoannaKopecka, , 2013 .

[73]  A. Abadi,et al.  New NSAID targets and derivatives for colorectal cancer chemoprevention. , 2013, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[74]  G. Nikkhah,et al.  Activation of canonical WNT/β-catenin signaling enhances in vitro motility of glioblastoma cells by activation of ZEB1 and other activators of epithelial-to-mesenchymal transition. , 2012, Cancer letters.

[75]  R. Jenkins,et al.  Genetics of adult glioma. , 2012, Cancer genetics.

[76]  Sushil K. Gupta,et al.  PPARγ Agonists Promote Oligodendrocyte Differentiation of Neural Stem Cells by Modulating Stemness and Differentiation Genes , 2012, PloS one.

[77]  L. Al-Harthi Wnt/β-catenin and its Diverse Physiological Cell Signaling Pathways in Neurodegenerative and Neuropsychiatric Disorders , 2012, Journal of Neuroimmune Pharmacology.

[78]  S. Cregan,et al.  The JNK- and AKT/GSK3β- Signaling Pathways Converge to Regulate Puma Induction and Neuronal Apoptosis Induced by Trophic Factor Deprivation , 2012, PloS one.

[79]  Jingfang Liu,et al.  Wnt inhibitory factor-1 regulates glioblastoma cell cycle and proliferation , 2012, Journal of Clinical Neuroscience.

[80]  C. Tseng,et al.  Peroxisome Proliferator-Activated Receptor Agonists and Bladder Cancer: Lessons from Animal Studies , 2012, Journal of environmental science and health. Part C, Environmental carcinogenesis & ecotoxicology reviews.

[81]  Wei Yan,et al.  MiR-218 reverses high invasiveness of glioblastoma cells by targeting the oncogenic transcription factor LEF1. , 2012, Oncology reports.

[82]  S. Pleasure,et al.  Wnt signaling and forebrain development. , 2012, Cold Spring Harbor perspectives in biology.

[83]  G. Hu,et al.  Resveratrol Enhances the Antitumor Effects of Temozolomide in Glioblastoma via ROS‐dependent AMPK‐TSC‐mTOR Signaling Pathway , 2012, CNS neuroscience & therapeutics.

[84]  S. Mandrup,et al.  Genome-Wide Profiling of Peroxisome Proliferator-Activated Receptor γ in Primary Epididymal, Inguinal, and Brown Adipocytes Reveals Depot-Selective Binding Correlated with Gene Expression , 2012, Molecular and Cellular Biology.

[85]  Christof Niehrs,et al.  Mitotic and mitogenic Wnt signalling , 2012, The EMBO journal.

[86]  S. Kohsaka,et al.  STAT3 Inhibition Overcomes Temozolomide Resistance in Glioblastoma by Downregulating MGMT Expression , 2012, Molecular Cancer Therapeutics.

[87]  J. Bright,et al.  PPARγ agonists regulate the expression of stemness and differentiation genes in brain tumour stem cells , 2012, British Journal of Cancer.

[88]  Deric M. Park,et al.  β-Catenin signaling initiates the activation of astrocytes and its dysregulation contributes to the pathogenesis of astrocytomas , 2012, Proceedings of the National Academy of Sciences.

[89]  C. Kang,et al.  Wnt/beta-Catenin Signaling in Glioma , 2012, Journal of Neuroimmune Pharmacology.

[90]  D. Harrison,et al.  The Jak/STAT pathway. , 2012, Cold Spring Harbor perspectives in biology.

[91]  L. Medina,et al.  β-Catenin Signalling in Glioblastoma Multiforme and Glioma-Initiating Cells , 2012, Chemotherapy research and practice.

[92]  P. Salinas Wnt signaling in the vertebrate central nervous system: from axon guidance to synaptic function. , 2012, Cold Spring Harbor perspectives in biology.

[93]  Soo Hyun Lee,et al.  Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) agonist, independently of PPARγ in human glioma cells. , 2012, Biochemical and biophysical research communications.

[94]  Moorthy P Ponnusamy,et al.  Targeting the EGFR signaling pathway in cancer therapy , 2012, Expert opinion on therapeutic targets.

[95]  C. Kang,et al.  Genome-wide identification of TCF7L2/TCF4 target miRNAs reveals a role for miR-21 in Wnt-driven epithelial cancer. , 2011, International journal of oncology.

[96]  K. Hoang-Xuan,et al.  Primary brain tumours in adults , 2003, The Lancet.

[97]  C. Kruchko,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. , 2012, Neuro-oncology.

[98]  M. Marra,et al.  The PPAR-γ agonist troglitazone antagonizes survival pathways induced by STAT-3 in recombinant interferon-β treated pancreatic cancer cells. , 2012, Biotechnology advances.

[99]  A. Shehzad,et al.  Adiponectin: Regulation of its production and its role in human diseases , 2012, Hormones.

[100]  P. Vogt,et al.  PI3K and STAT3: a new alliance. , 2011, Cancer Discovery.

[101]  W. Yung,et al.  FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. , 2011, Cancer cell.

[102]  G. Semenza,et al.  Metabolic regulation of hematopoietic stem cells in the hypoxic niche. , 2011, Cell stem cell.

[103]  Mitsutoshi Nakada,et al.  Aberrant Signaling Pathways in Glioma , 2011, Cancers.

[104]  E. Domany,et al.  The Wnt inhibitory factor 1 (WIF1) is targeted in glioblastoma and has a tumor suppressing function potentially by induction of senescence. , 2011, Neuro-oncology.

[105]  Zhengyu Zha,et al.  Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. , 2011, Molecular cell.

[106]  Kai Huang,et al.  High β-catenin/Tcf-4 activity confers glioma progression via direct regulation of AKT2 gene expression. , 2011, Neuro-oncology.

[107]  Lei Wang,et al.  β-Catenin overexpression in malignant glioma and its role in proliferation and apoptosis in glioblastma cells , 2011, Medical oncology.

[108]  H. Tinsley,et al.  Inhibition of PDE5 by Sulindac Sulfide Selectively Induces Apoptosis and Attenuates Oncogenic Wnt/β-Catenin–Mediated Transcription in Human Breast Tumor Cells , 2011, Cancer Prevention Research.

[109]  C. Miracco,et al.  β-catenin and Gli1 are prognostic markers in glioblastoma , 2011, Cancer biology & therapy.

[110]  Hongyu Zhou,et al.  The targets of curcumin. , 2011, Current drug targets.

[111]  U. Cortes,et al.  STAT3 is essential for the maintenance of neurosphere‐initiating tumor cells in patients with glioblastomas: A potential for targeted therapy? , 2011, International journal of cancer.

[112]  K. Walsh,et al.  Adipokines in inflammation and metabolic disease , 2011, Nature Reviews Immunology.

[113]  Xiaodong Jin,et al.  Wnt/beta-Catenin pathway in human glioma: expression pattern and clinical/prognostic correlations , 2011, Clinical and Experimental Medicine.

[114]  Q. Lan,et al.  Peroxisome proliferator-activated receptor γ agonist pioglitazone inhibits β-catenin-mediated glioma cell growth and invasion , 2011, Molecular and Cellular Biochemistry.

[115]  Tao Jiang,et al.  Inactivation of PI3K/AKT signaling inhibits glioma cell growth through modulation of β-catenin-mediated transcription , 2010, Brain Research.

[116]  T. Jiang,et al.  Interruption of β-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets in human glioma cells , 2010, Brain Research.

[117]  V. Seifert,et al.  Dietary Curcumin Attenuates Glioma Growth in a Syngeneic Mouse Model by Inhibition of the JAK1,2/STAT3 Signaling Pathway , 2010, Clinical Cancer Research.

[118]  S. Chi,et al.  Activated STAT3 Regulates Hypoxia-Induced Angiogenesis and Cell Migration in Human Glioblastoma , 2010, Neurosurgery.

[119]  Z. Su,et al.  Inhibition of AP-1 by SARI negatively regulates transformation progression mediated by CCN1 , 2010, Oncogene.

[120]  Eun-Mi Hur,et al.  GSK3 signalling in neural development , 2010, Nature Reviews Neuroscience.

[121]  Y. Lecarpentier,et al.  PPARs, Cardiovascular Metabolism, and Function: Near- or Far-from-Equilibrium Pathways , 2010, PPAR research.

[122]  Guang-hui Li,et al.  Knockdown of STAT3 expression by RNAi suppresses growth and induces apoptosis and differentiation in glioblastoma stem cells. , 2010, International journal of oncology.

[123]  M. Wolter,et al.  Frequent promoter hypermethylation of Wnt pathway inhibitor genes in malignant astrocytic gliomas , 2010, International journal of cancer.

[124]  Ying Wang,et al.  Downregulation of WIF-1 by hypermethylation in astrocytomas. , 2010, Acta biochimica et biophysica Sinica.

[125]  Yonghong Xiao,et al.  PLAGL2 regulates Wnt signaling to impede differentiation in neural stem cells and gliomas. , 2010, Cancer cell.

[126]  S. Nozell,et al.  NF-κB and STAT3 signaling in glioma: targets for future therapies , 2010, Expert review of neurotherapeutics.

[127]  V. Canzonieri,et al.  PPAR Signaling Pathway and Cancer-Related Proteins Are Involved in Celiac Disease-Associated Tissue Damage , 2010 .

[128]  C. Mo,et al.  PPARgamma regulates LIF-induced growth and self-renewal of mouse ES cells through Tyk2-Stat3 pathway. , 2010, Cellular signalling.

[129]  Dianqing Wu,et al.  GSK3: a multifaceted kinase in Wnt signaling. , 2010, Trends in biochemical sciences.

[130]  R. DuBois,et al.  Eicosanoids and cancer , 2010, Nature Reviews Cancer.

[131]  Susan M. Chang,et al.  Recent advances in therapy for glioblastoma. , 2010, Archives of neurology.

[132]  Chi V Dang,et al.  Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. , 2010, Cancer research.

[133]  J. Uhm,et al.  The transcriptional network for mesenchymal transformation of brain tumours , 2010 .

[134]  S. Catts,et al.  Cytotoxic effects of antipsychotic drugs implicate cholesterol homeostasis as a novel chemotherapeutic target , 2010, International journal of cancer.

[135]  Jing Chen,et al.  Tyrosine Phosphorylation Inhibits PKM2 to Promote the Warburg Effect and Tumor Growth , 2009, Science Signaling.

[136]  Zhi-qiang Zhang,et al.  [Significance of beta-catenin and Cyclin D1 express in glioma]. , 2009, Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology.

[137]  B. Cochran,et al.  STAT3 Is Required for Proliferation and Maintenance of Multipotency in Glioblastoma Stem Cells , 2009, Stem cells.

[138]  Y. Lecarpentier,et al.  A potential link between peroxisome proliferator-activated receptor signalling and the pathogenesis of arrhythmogenic right ventricular cardiomyopathy. , 2009, Cardiovascular research.

[139]  A. Mahadevan,et al.  Activation of Wnt/β-catenin/Tcf signaling pathway in human astrocytomas , 2009, Neurochemistry International.

[140]  R. Boisgard,et al.  Proteomic analysis of β‐catenin activation in mouse liver by DIGE analysis identifies glucose metabolism as a new target of the Wnt pathway , 2009, Proteomics.

[141]  Ichiro Takada,et al.  Wnt and PPARγ signaling in osteoblastogenesis and adipogenesis , 2009, Nature Reviews Rheumatology.

[142]  Randall T. Moon,et al.  Proximal events in Wnt signal transduction , 2009, Nature Reviews Molecular Cell Biology.

[143]  M. Heneka,et al.  PPARγ and RXRγ ligands act synergistically as potent antineoplastic agents in vitro and in vivo glioma models , 2009, Journal of neurochemistry.

[144]  Julie S. Jurenka Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. , 2009, Alternative medicine review : a journal of clinical therapeutic.

[145]  M. Wang,et al.  Differentiation of SWO-38 glioma cells induced by CDA-2 is mediated by peroxisome proliferator-activated receptor γ , 2009, Journal of Neuro-Oncology.

[146]  H. Jiang,et al.  Downregulation of Wnt2 and β-catenin by siRNA suppresses malignant glioma cell growth , 2009, Cancer Gene Therapy.

[147]  Yanjie Lu,et al.  Synergistic inhibitory effect of sulforaphane and 5‐fluorouracil in high and low metastasis cell lines of salivary gland adenoid cystic carcinoma , 2009, Phytotherapy research : PTR.

[148]  F. Gonzalez,et al.  Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. , 2008, Cell metabolism.

[149]  Anthony Mancuso,et al.  Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction , 2008, Proceedings of the National Academy of Sciences.

[150]  S. Sarin,et al.  Turcot syndrome (glioma polyposis): a case report. , 2008, Southern medical journal.

[151]  R. Kiss,et al.  Combining bevacizumab with temozolomide increases the antitumor efficacy of temozolomide in a human glioblastoma orthotopic xenograft model. , 2008, Neoplasia.

[152]  Wei Zhang,et al.  beta-Catenin/TCF pathway upregulates STAT3 expression in human esophageal squamous cell carcinoma. , 2008, Cancer letters.

[153]  J. Bright,et al.  PPARγ agonists inhibit growth and expansion of CD133+ brain tumour stem cells , 2008, British Journal of Cancer.

[154]  Robert A. Harris,et al.  Pyruvate Dehydrogenase Complex Activity Controls Metabolic and Malignant Phenotype in Cancer Cells* , 2008, Journal of Biological Chemistry.

[155]  Xi He,et al.  DKK1 Antagonizes Wnt Signaling without Promotion of LRP6 Internalization and Degradation* , 2008, Journal of Biological Chemistry.

[156]  J. Bright,et al.  PPAR Regulation of Inflammatory Signaling in CNS Diseases , 2008, PPAR research.

[157]  Gianluca Bontempi,et al.  Evidence of galectin-1 involvement in glioma chemoresistance. , 2008, Toxicology and applied pharmacology.

[158]  E. Cisneros,et al.  Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease , 2008, Journal of Cell Science.

[159]  J. Yi,et al.  Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. , 2008, Frontiers in bioscience : a journal and virtual library.

[160]  U. Bogdahn,et al.  Low-Dose Chemotherapy in Combination with COX-2 Inhibitors and PPAR-Gamma Agonists in Recurrent High-Grade Gliomas – A Phase II Study , 2008, Oncology.

[161]  Ki Wook Kim,et al.  Role of Wnt5a in the proliferation of human glioblastoma cells. , 2007, Cancer letters.

[162]  G. Semenza,et al.  Hypoxia-Inducible Factor 1 and Dysregulated c-Myc Cooperatively Induce Vascular Endothelial Growth Factor and Metabolic Switches Hexokinase 2 and Pyruvate Dehydrogenase Kinase 1 , 2007, Molecular and Cellular Biology.

[163]  C. Mantzoros,et al.  Adiponectin in relation to malignancies: a review of existing basic research and clinical evidence. , 2007, The American journal of clinical nutrition.

[164]  Y. Kondo,et al.  Roles of the Akt/mTOR/p70S6K and ERK1/2 Signaling Pathways in Curcumin-Induced Autophagy , 2007, Autophagy.

[165]  C. Glass,et al.  PPARs and molecular mechanisms of transrepression. , 2007, Biochimica et biophysica acta.

[166]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[167]  Paul Talalay,et al.  Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. , 2007, Carcinogenesis.

[168]  R. Deberardinis,et al.  The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. , 2007, Genes & development.

[169]  P. Hrelia,et al.  Sulforaphane as a promising molecule for fighting cancer. , 2007, Mutation research.

[170]  D. Feinstein,et al.  Differential effects of PPARγ agonists on the metabolic properties of gliomas and astrocytes , 2007, Neuroscience Letters.

[171]  S. Stevanović,et al.  Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy , 2007, British Journal of Cancer.

[172]  A. Mamelak,et al.  Targeted delivery of antitumoral therapy to glioma and other malignancies with synthetic chlorotoxin (TM-601) , 2007, Expert opinion on drug delivery.

[173]  V. Menon,et al.  Antioxidant and anti-inflammatory properties of curcumin. , 2007, Advances in experimental medicine and biology.

[174]  Hans Clevers,et al.  Wnt/β-Catenin Signaling in Development and Disease , 2006, Cell.

[175]  D. Feinstein,et al.  Inhibition of in Vivo Glioma Growth and Invasion by Peroxisome Proliferator-Activated Receptor γ Agonist Treatment , 2006, Molecular Pharmacology.

[176]  S. Fesik,et al.  Hypoxia-Inducible Factor-1 Inhibition in Combination with Temozolomide Treatment Exhibits Robust Antitumor Efficacy In vivo , 2006, Clinical Cancer Research.

[177]  S. Farmer,et al.  Functional Interaction between Peroxisome Proliferator-Activated Receptor γ and β-Catenin , 2006, Molecular and Cellular Biology.

[178]  Michael D. Schneider,et al.  Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. , 2006, The Journal of clinical investigation.

[179]  R. Evans,et al.  PPARδ: a dagger in the heart of the metabolic syndrome , 2006 .

[180]  David N Louis,et al.  Molecular pathology of malignant gliomas. , 2006, Annual review of pathology.

[181]  H. Clevers Wnt/beta-catenin signaling in development and disease. , 2006, Cell.

[182]  Hong Wang,et al.  Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin. , 2006, Molecular and cellular biology.

[183]  R. Evans,et al.  PPAR delta: a dagger in the heart of the metabolic syndrome. , 2006, The Journal of clinical investigation.

[184]  Koji Yoshimoto,et al.  Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. , 2005, The New England journal of medicine.

[185]  L. Sommer,et al.  Wnt signaling: multiple functions in neural development , 2005, Cellular and Molecular Life Sciences CMLS.

[186]  Jianye Xu,et al.  Activation of PPAR{gamma} by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. , 2005, American journal of physiology. Gastrointestinal and liver physiology.

[187]  C. Rhee,et al.  Sulindac and its metabolites inhibit invasion of glioblastoma cells via down‐regulation of Akt/PKB and MMP‐2 , 2005, Journal of cellular biochemistry.

[188]  S. Pettersson,et al.  The Wnt/beta-catenin signaling pathway targets PPARgamma activity in colon cancer cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[189]  H. Leu,et al.  Circulating endothelial progenitor cells. , 2005, The New England journal of medicine.

[190]  R. Nusse,et al.  Wnt signaling in disease and in development , 2005, Cell Research.

[191]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[192]  Yusuke Nakamura,et al.  DKK1, a negative regulator of Wnt signaling, is a target of the β-catenin/TCF pathway , 2004, Oncogene.

[193]  K. Possinger,et al.  A novel PPAR alpha/gamma dual agonist inhibits cell growth and induces apoptosis in human glioblastoma T98G cells. , 2004, Acta pharmacologica Sinica.

[194]  Ugo Orfanelli,et al.  Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma , 2004, Cancer Research.

[195]  A. Rana,et al.  Peroxisome Proliferator-activated Receptor γ Activation Can Regulate β-Catenin Levels via a Proteasome-mediated and Adenomatous Polyposis Coli-independent Pathway* , 2004, Journal of Biological Chemistry.

[196]  Y. Yun,et al.  Neuronal differentiation of embryonic midbrain cells by upregulation of peroxisome proliferator-activated receptor-gamma via the JNK-dependent pathway. , 2004, Experimental cell research.

[197]  M. Lazar,et al.  Peroxisome proliferator-activated receptor γ in diabetes and metabolism , 2004 .

[198]  B. Joe,et al.  Biological Properties of Curcumin-Cellular and Molecular Mechanisms of Action , 2004, Critical reviews in food science and nutrition.

[199]  Adam Dicker,et al.  The contribution of epidermal growth factor receptor (EGFR) signaling pathway to radioresistance in human gliomas: a review of preclinical and correlative clinical data. , 2004, International journal of radiation oncology, biology, physics.

[200]  Masahide Takahashi,et al.  Plakoglobin (γ-catenin) has TCF/LEF family-dependent transcriptional activity in β-catenin-deficient cell line , 2004, Oncogene.

[201]  A. von Deimling,et al.  Ligands for PPARγ and RAR Cause Induction of Growth Inhibition and Apoptosis in Human Glioblastomas , 2003, Journal of Neuro-Oncology.

[202]  K. Fujii,et al.  Relationship between the Expression of E-, N-cadherins and beta-catenin and Tumor Grade in Astrocytomas , 2002, Journal of Neuro-Oncology.

[203]  A. Rana,et al.  Peroxisome proliferator-activated receptor gamma activation can regulate beta-catenin levels via a proteasome-mediated and adenomatous polyposis coli-independent pathway. , 2004, The Journal of biological chemistry.

[204]  M. Lazar,et al.  Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. , 2004, TIPS - Trends in Pharmacological Sciences.

[205]  Masahide Takahashi,et al.  Plakoglobin (gamma-catenin) has TCF/LEF family-dependent transcriptional activity in beta-catenin-deficient cell line. , 2004, Oncogene.

[206]  R. Morrison,et al.  Peroxisome-proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis. , 2003, The Biochemical journal.

[207]  Rolf Gruetter,et al.  Glycogen: The forgotten cerebral energy store , 2003, Journal of neuroscience research.

[208]  Georg C. Terstappen,et al.  Functional Characterization of WNT7A Signaling in PC12 Cells , 2003, Journal of Biological Chemistry.

[209]  Yoshiaki Kawano,et al.  Secreted antagonists of the Wnt signalling pathway , 2003, Journal of Cell Science.

[210]  Soo Young Park,et al.  15d-PGJ2 and Rosiglitazone Suppress Janus Kinase-STAT Inflammatory Signaling through Induction of Suppressor of Cytokine Signaling 1 (SOCS1) and SOCS3 in Glia* , 2003, The Journal of Biological Chemistry.

[211]  J. Tonn,et al.  Mechanisms of glioma cell invasion. , 2003, Acta neurochirurgica. Supplement.

[212]  J. Auwerx,et al.  PPAR(gamma) and glucose homeostasis. , 2003, Annual review of nutrition.

[213]  M. Ackenheil,et al.  Developments in antipsychotic therapy with regard to hypotheses for schizophrenia , 2002, Dialogues in clinical neuroscience.

[214]  L. Parada,et al.  The Molecular and Genetic Basis of Neurological Tumours , 2002, Nature Reviews Cancer.

[215]  Huasheng Lu,et al.  Hypoxia-inducible Factor 1 Activation by Aerobic Glycolysis Implicates the Warburg Effect in Carcinogenesis* , 2002, The Journal of Biological Chemistry.

[216]  T. Zander,et al.  Induction of apoptosis in human and rat glioma by agonists of the nuclear receptor PPARγ , 2002 .

[217]  Ansuman Bagchi,et al.  Printed in U.S.A. Copyright © 2002 by The Endocrine Society Gene Expression Profile of Adipocyte Differentiation and Its Regulation by Peroxisome Proliferator-Activated , 2022 .

[218]  N. Perrimon,et al.  The Promise and Perils of Wnt Signaling Through β-Catenin , 2002, Science.

[219]  T. Zander,et al.  Induction of apoptosis in human and rat glioma by agonists of the nuclear receptor PPARgamma. , 2002, Journal of neurochemistry.

[220]  D. Gerhold,et al.  Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-gamma agonists. , 2002, Endocrinology.

[221]  N. Perrimon,et al.  The promise and perils of Wnt signaling through beta-catenin. , 2002, Science.

[222]  Bradley E. Enerson,et al.  Expression of monocarboxylate transporter MCT1 in normal and neoplastic human CNS tissues , 2001, Neuroreport.

[223]  Jianchun Dong,et al.  Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. , 2001, Progress in nucleic acid research and molecular biology.

[224]  W. Wahli,et al.  Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. , 2001, Endocrinology.

[225]  B. Spiegelman,et al.  Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[226]  B. Spiegelman,et al.  PAX8-PPARγ1 Fusion in Oncogene Human Thyroid Carcinoma , 2000 .

[227]  C. J. Chen,et al.  PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. , 2000, Science.

[228]  C. Dang,et al.  Deregulation of Glucose Transporter 1 and Glycolytic Gene Expression by c-Myc* , 2000, The Journal of Biological Chemistry.

[229]  G. Piazza,et al.  Exisulind induction of apoptosis involves guanosine 3',5'-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated beta-catenin. , 2000, Cancer research.

[230]  Michael Shtutman,et al.  Differential Mechanisms of LEF/TCF Family-Dependent Transcriptional Activation by β-Catenin and Plakoglobin , 2000, Molecular and Cellular Biology.

[231]  M. Kondo,et al.  Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-gamma agonists through induction of apoptosis. , 2000, Biochemical and biophysical research communications.

[232]  Derek W. Gilroy,et al.  New insights into the role of COX 2 in inflammation , 2000, Journal of Molecular Medicine.

[233]  B. Spiegelman,et al.  Loss-of-Function Mutations in PPARγ Associated with Human Colon Cancer , 1999 .

[234]  C. Albanese,et al.  The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[235]  Paul Polakis,et al.  The oncogenic activation of β-catenin , 1999 .

[236]  P. Polakis The oncogenic activation of beta-catenin. , 1999, Current opinion in genetics & development.

[237]  B. Spiegelman,et al.  Loss-of-function mutations in PPAR gamma associated with human colon cancer. , 1999, Molecular cell.

[238]  B. Geiger,et al.  Differential molecular interactions of beta-catenin and plakoglobin in adhesion, signaling and cancer. , 1998, Current opinion in cell biology.

[239]  A. Sparks,et al.  Identification of c-MYC as a target of the APC pathway. , 1998, Science.

[240]  B. Spiegelman,et al.  Terminal differentiation of human breast cancer through PPAR gamma. , 1998, Molecular cell.

[241]  M. Davies,et al.  Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. , 1997, Journal of the American College of Cardiology.

[242]  J. Auwerx,et al.  The Organization, Promoter Analysis, and Expression of the Human PPARγ Gene* , 1997, The Journal of Biological Chemistry.

[243]  Jörg Stappert,et al.  β‐catenin is a target for the ubiquitin–proteasome pathway , 1997 .

[244]  M. D. Leibowitz,et al.  Molecular Cloning, Expression and Characterization of Human Peroxisome Proliferator Activated Receptors γ1 and γ2 , 1996 .

[245]  M. D. Leibowitz,et al.  Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. , 1996, Biochemical and biophysical research communications.

[246]  W. Wahli,et al.  Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. , 1996, Endocrinology.

[247]  L. Liotta,et al.  Elevated Levels of Mr 92,000 Type IV Collagenase in Human Brain Tumors , 1993 .

[248]  L. Liotta,et al.  Elevated levels of M(r) 92,000 type IV collagenase in human brain tumors. , 1993, Cancer research.

[249]  O. Warburg On the origin of cancer cells. , 1956, Science.