A robust method for optimization of semi-rigid steel frames subject to seismic loading

Abstract In this study, we develop a seismic optimization method to minimize the semi-rigid steel frame cost. In the proposed method, cross-sections of columns and beams and types of beam-to-column and base restraint semi-rigid joints are considered as the design variables of the optimization. The nonlinear seismic behaviors of the structure are carried out by using plastic-hinge beam-column elements for beams and columns, zero-length elements for semi-rigid connections, and time-history dynamic analysis. An effective implementation of harmony search technique (HS) is presented to find the global optimal solution of the optimization. In order to improve HS, a multi-comparison technique (MCT) is proposed that significantly reduces the useless time-consuming evaluations in the optimization. The robustness and efficiency of the proposed method are demonstrated through three optimization problems of semi-rigid steel frames. Compared with particle swarm optimization (PSO), micro-genetic algorithm (micro-GA), and genetic algorithm (GA), the proposed method is found to significantly reduce the number of structural analyses required and yield the better optimum frame designs.

[1]  A. Kaveh,et al.  A DISCRETE BIG BANG - BIG CRUNCH ALGORITHM FOR OPTIMAL DESIGN OF SKELETAL STRUCTURES , 2010 .

[2]  John F. Abel,et al.  Yield surface applications in nonlinear steel frame analysis , 1982 .

[3]  Barron J. Bichon,et al.  Design of Steel Frames Using Ant Colony Optimization , 2005 .

[4]  Seung-Eock Kim,et al.  An efficient method for optimizing space steel frames with semi-rigid joints using practical advanced analysis and the micro-genetic algorithm , 2017 .

[5]  Orhan Aksogan,et al.  Using genetic algorithm for the optimization of seismic behavior of steel planar frames with semi-rigid connections , 2012 .

[6]  Ali Kaveh,et al.  Optimum seismic design of steel frames considering the connection types , 2017 .

[7]  A. K. Aggarwal,et al.  Comparative tests on endplate beam-to-column connections , 1994 .

[8]  J. A. Bland Discrete-variable optimal structural design using tabu search , 1995 .

[9]  Eduardo Bayo,et al.  An effective component-based method to model semi-rigid connections for the global analysis of steel and composite structures , 2006 .

[10]  Phu-Cuong Nguyen,et al.  Nonlinear inelastic time-history analysis of three-dimensional semi-rigid steel frames , 2014 .

[11]  Viet-Hung Truong,et al.  An efficient method for reliability-based design optimization of nonlinear inelastic steel space frames , 2017 .

[12]  Wai-Fah Chen,et al.  Stability design of semi-rigid frames , 1996 .

[13]  S. O. Degertekin,et al.  Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization , 2005 .

[14]  Donald E. Grierson,et al.  COMPUTER-AUTOMATED DESIGN OF SEMIRIGID STEEL FRAMEWORKS , 1993 .

[15]  Eduardo Bayo,et al.  Experimental and numerical validation of a new design for three-dimensional semi-rigid composite joints , 2013 .

[16]  S. O. Degertekin Optimum design of steel frames using harmony search algorithm , 2008 .

[17]  Ali Kaveh,et al.  OPTIMAL DESIGN OF STEEL FRAMES UNDER SEISMIC LOADING USING TWO META-HEURISTIC ALGORITHMS , 2013 .

[18]  Phu-Cuong Nguyen,et al.  Investigating effects of various base restraints on the nonlinear inelastic static and seismic responses of steel frames , 2017 .

[19]  S. Rajeev,et al.  Discrete Optimization of Structures Using Genetic Algorithms , 1992 .

[20]  Yeong-bin Yang,et al.  Solution method for nonlinear problems with multiple critical points , 1990 .

[21]  Patrick Murren,et al.  Connection topology optimization of steel moment frames using metaheuristic algorithms , 2015 .

[22]  N. Kishi,et al.  Semirigid Steel Beam‐to‐Column Connections: Data Base and Modeling , 1989 .

[23]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[24]  Kamran Behdinan,et al.  Particle swarm approach for structural design optimization , 2007 .

[25]  Eric M. Lui,et al.  Structural Stability: Theory and Implementation , 1987 .

[26]  M. P. Saka,et al.  Adaptive Harmony Search Method for Structural Optimization , 2010 .

[27]  Mehmet Polat Saka,et al.  Design optimization of real world steel space frames using artificial bee colony algorithm with Levy flight distribution , 2016, Adv. Eng. Softw..

[28]  Anne-Françoise Cutting-Decelle,et al.  Multi-stage production cost optimization of semi-rigid steel frames using genetic algorithms , 2009 .

[29]  N. Kishi,et al.  Nonlinear finite element analysis of top- and seat-angle with double web-angle connections , 2001 .

[30]  Seung-Eock Kim,et al.  Practical advanced analysis software for nonlinear inelastic analysis of space steel structures , 2009, Adv. Eng. Softw..

[31]  N. E. Shanmugam,et al.  Testing of semi-rigid unbraced frames for calibration of second-order inelastic analysis , 1997 .

[32]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[33]  Kapil Khandelwal,et al.  Comparison of robustness of metaheuristic algorithms for steel frame optimization , 2015 .

[34]  A. Kaveh,et al.  Optimal design of large-scale space steel frames using cascade enhanced colliding body optimization , 2017 .

[35]  Huu-Tai Thai,et al.  Nonlinear inelastic analysis of space frames , 2011 .

[36]  Seung-Eock Kim,et al.  Practical advanced analysis software for nonlinear inelastic dynamic analysis of steel structures , 2011 .

[37]  Mehmet Polat Saka,et al.  Optimum geometry design of nonlinear braced domes using genetic algorithm , 2007 .

[38]  Zong Woo Geem,et al.  A survey on applications of the harmony search algorithm , 2013, Eng. Appl. Artif. Intell..

[39]  Eduardo Bayo,et al.  The semi-rigid behaviour of three-dimensional steel beam-to-column joints subjected to proportional loading. Part I. Experimental evaluation , 2007 .

[40]  Cuong Ngo-Huu,et al.  Second-order plastic-hinge analysis of space semi-rigid steel frames , 2012 .

[41]  Makoto Ohsaki,et al.  Optimal placement of braces for steel frames with semi-rigid joints by scatter search , 2008 .

[42]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[43]  O. Hasançebi,et al.  Cost efficiency analyses of steel frameworks for economical design of multi-storey buildings , 2017 .

[44]  Zong Woo Geem,et al.  Mathematical and Metaheuristic Applications in Design Optimization of Steel Frame Structures: An Extensive Review , 2013 .

[45]  Luis Simões,et al.  Optimization of frames with semi-rigid connections , 1996 .

[46]  Saeed Gholizadeh,et al.  Optimal seismic design of steel structures by an efficient soft computing based algorithm , 2010 .

[47]  Lei Xu,et al.  Seismic Design Optimization of Steel Building Frameworks , 2006 .

[48]  Donald E. Grierson,et al.  Energy-based design optimization of steel building frameworks using nonlinear response history analysis , 2012 .