Non-Local Probes Do Not Help with Graph Problems

This work bridges the gap between distributed and centralised models of computing in the context of sublinear-time graph algorithms. A priori, typical centralised models of computing (e.g., parallel decision trees or centralised local algorithms) seem to be much more powerful than distributed message-passing algorithms: centralised algorithms can directly probe any part of the input, while in distributed algorithms nodes can only communicate with their immediate neighbours. We show that for a large class of graph problems, this extra freedom does not help centralised algorithms at all: for example, efficient stateless deterministic centralised local algorithms can be simulated with efficient distributed message-passing algorithms. In particular, this enables us to transfer existing lower bound results from distributed algorithms to centralised local algorithms.

[1]  Jukka Suomela,et al.  Survey of local algorithms , 2013, CSUR.

[2]  Béla Bollobás,et al.  The independence ratio of regular graphs , 1981 .

[3]  Omer Reingold,et al.  New techniques and tighter bounds for local computation algorithms , 2014, J. Comput. Syst. Sci..

[4]  Faith Ellen,et al.  Lower bounds for parallel computation on linked structures , 1990, SPAA '90.

[5]  Ronitt Rubinfeld,et al.  Constructing near spanning trees with few local inspections , 2015, Random Struct. Algorithms.

[6]  Ronitt Rubinfeld,et al.  Local Computation Algorithms for Graphs of Non-constant Degrees , 2016, Algorithmica.

[7]  Moshe Morgenstern,et al.  Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every Prime Power q , 1994, J. Comb. Theory, Ser. B.

[8]  Moni Naor,et al.  Derandomized Constructions of k-Wise (Almost) Independent Permutations , 2005, Algorithmica.

[9]  Ronitt Rubinfeld,et al.  Local Computation Algorithms for Graphs of Non-Constant Degrees , 2015, SPAA.

[10]  Ronitt Rubinfeld,et al.  Local Reconstructors and Tolerant Testers for Connectivity and Diameter , 2012, APPROX-RANDOM.

[11]  Ronitt Rubinfeld,et al.  Fast Local Computation Algorithms , 2011, ICS.

[12]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[13]  Yishay Mansour,et al.  A Local Computation Approximation Scheme to Maximum Matching , 2013, APPROX-RANDOM.

[14]  Ronitt Rubinfeld,et al.  Local Algorithms for Sparse Spanning Graphs , 2014, APPROX-RANDOM.

[15]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[16]  M. Kaufmann What Can Be Computed Locally ? , 2003 .

[17]  Krzysztof Onak,et al.  Constant-Time Approximation Algorithms via Local Improvements , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[18]  M. Murty Ramanujan Graphs , 1965 .

[19]  James B. Shearer,et al.  A note on the independence number of triangle-free graphs , 1983, Discret. Math..

[20]  Stefan Schmid,et al.  Large Cuts with Local Algorithms on Triangle-Free Graphs , 2014, Electron. J. Comb..

[21]  Nathan Linial,et al.  Locality in Distributed Graph Algorithms , 1992, SIAM J. Comput..

[22]  Uriel Feige,et al.  Learning and inference in the presence of corrupted inputs , 2015, COLT.

[23]  Thomas Moscibroda,et al.  What Cannot Be Computed Locally , 2004 .

[24]  Dana Ron,et al.  Deterministic Stateless Centralized Local Algorithms for Bounded Degree Graphs , 2014, ESA.

[25]  B. Mohar,et al.  Eigenvalues and the max-cut problem , 1990 .

[26]  Noga Alon,et al.  Space-efficient local computation algorithms , 2011, SODA.

[27]  Dana Ron,et al.  Distributed Maximum Matching in Bounded Degree Graphs , 2015, ICDCN.

[28]  Yishay Mansour,et al.  Converting Online Algorithms to Local Computation Algorithms , 2012, ICALP.

[29]  Andrzej Czygrinow,et al.  Fast Distributed Approximations in Planar Graphs , 2008, DISC.

[30]  Noga Alon,et al.  Almost k-Wise vs. k-Wise Independent Permutations, and Uniformity for General Group Actions , 2012, Theory Comput..

[31]  Christoph Lenzen,et al.  Leveraging Linial's Locality Limit , 2008, DISC.

[32]  James B. Shearer,et al.  A Note on Bipartite Subgraphs of Triangle-Free Graphs , 1992, Random Struct. Algorithms.

[33]  Noga Alon On Constant Time Approximation of Parameters of Bounded Degree Graphs , 2010, Property Testing.

[34]  Dana Ron,et al.  Best of Two Local Models: Local Centralized and Local Distributed Algorithms , 2014, ArXiv.

[35]  Dana Ron,et al.  On Approximating the Minimum Vertex Cover in Sublinear Time and the Connection to Distributed Algorithms , 2007, Electron. Colloquium Comput. Complex..