Text area segmentation from document images by novel adaptive thresholding and template matching using texture cues

This paper presents a new perspective of text area segmentation from document images using a novel adaptive thresholding for image enhancement. Using sliding windows, the texture of the enhanced image is matched with that of a fixed training template image containing the typed letters ‘dB.’ The affine-invariant, low-dimensional difference theoretic texture feature set is used for the texture measurement. The distance matrix is binarized using Otsu threshold, and the ‘0’ pixels indicate the text area. One primary contribution of this paper is the novel adaptive thresholding for document image enhancement prior to the extraction of texture cues. The proposed adaptive thresholding mimics the ability of the human eye to iteratively adjust to varying light intensities through iterative gamma correction followed by contrast stretching so that the text becomes well defined against the background clutter. The text blobs so segmented are binarized using Yanowitz and Bruckstein method of text binarization, and the results are applied for evaluation with respect to the ground-truth annotations. We tested our algorithm on the benchmark DIBCO 2009, 2010, 2011, 2012, 2013 document image datasets in comparison with the state of the art. The high precision–recall and F -score values establish the efficiency of our approach.

[1]  Madasu Hanmandlu,et al.  Difference theoretic feature set for scale-, illumination- and rotation-invariant texture classification , 2013, IET Image Process..

[2]  Venu Govindaraju,et al.  Historical document image enhancement using background light intensity normalization , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[3]  Anil K. Jain,et al.  Text segmentation using gabor filters for automatic document processing , 1992, Machine Vision and Applications.

[4]  Laurence Likforman-Sulem,et al.  Text line segmentation of historical documents: a survey , 2007, International Journal of Document Analysis and Recognition (IJDAR).

[5]  S.M. Lucas,et al.  ICDAR 2005 text locating competition results , 2005, Eighth International Conference on Document Analysis and Recognition (ICDAR'05).

[6]  Jin Hyung Kim,et al.  Texture-Based Approach for Text Detection in Images Using Support Vector Machines and Continuously Adaptive Mean Shift Algorithm , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Andreas Dengel,et al.  anyOCR: An Open-Source OCR System for Historical Archives , 2017, 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR).

[8]  Larry Gillick,et al.  A hidden Markov model approach to text segmentation and event tracking , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[9]  Madasu Hanmandlu,et al.  A non-extensive entropy feature and its application to texture classification , 2013, Neurocomputing.

[10]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[12]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Øivind Due Trier,et al.  Evaluation of Binarization Methods for Document Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Anil K. Jain,et al.  Learning Texture Discrimination Masks , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Alaa Sulaiman,et al.  A database for degraded Arabic historical manuscripts , 2017, 2017 6th International Conference on Electrical Engineering and Informatics (ICEEI).

[16]  Ching Y. Suen,et al.  Shape-Based Analysis for Automatic Segmentation of Arabic Handwritten Text , 2013, Canadian Conference on AI.

[17]  Lance Chun Che Fung,et al.  Character segmentation from ancient palm leaf manuscripts in Thailand , 2011, HIP '11.

[18]  Ioannis Pratikakis,et al.  ICDAR 2013 Document Image Binarization Contest (DIBCO 2013) , 2013, 2013 12th International Conference on Document Analysis and Recognition.

[19]  Jean-Marc Odobez,et al.  Comparison of Support Vector Machine and Neural Network for Text Texture Verification , 2002 .

[20]  Matti Pietikäinen,et al.  Adaptive document image binarization , 2000, Pattern Recognit..

[21]  J. Jennifer Ranjani,et al.  Bi-level thresholding for binarisation of handwritten and printed documents , 2015, IET Comput. Vis..

[22]  Ioannis Pratikakis,et al.  H-DIBCO 2010 - Handwritten Document Image Binarization Competition , 2010, 2010 12th International Conference on Frontiers in Handwriting Recognition.

[23]  Zhenhua Guo,et al.  Rotation invariant texture classification using LBP variance (LBPV) with global matching , 2010, Pattern Recognit..

[24]  B. Kapralos,et al.  I An Introduction to Digital Image Processing , 2022 .

[25]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Ioannis Pratikakis,et al.  ICFHR 2012 Competition on Handwritten Document Image Binarization (H-DIBCO 2012) , 2012, 2012 International Conference on Frontiers in Handwriting Recognition.

[27]  Chunheng Wang,et al.  Conditional random field for text segmentation from images with complex background , 2010, Pattern Recognit. Lett..

[28]  Karol Myszkowski,et al.  Adaptive Logarithmic Mapping For Displaying High Contrast Scenes , 2003, Comput. Graph. Forum.

[29]  Rangachar Kasturi,et al.  A Robust Algorithm for Text String Separation from Mixed Text/Graphics Images , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Chew Lim Tan,et al.  Text extraction from gray scale document images using edge information , 2001, Proceedings of Sixth International Conference on Document Analysis and Recognition.

[31]  Tommy W. S. Chow,et al.  Textual and Visual Content-Based Anti-Phishing: A Bayesian Approach , 2011, IEEE Transactions on Neural Networks.

[32]  Yan Chen,et al.  Comparison of some thresholding algorithms for text/background segmentation in difficult document images , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[33]  Anil K. Jain,et al.  An Intrinsic Dimensionality Estimator from Near-Neighbor Information , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Anil K. Jain,et al.  Document Structure and Layout Analysis , 2007 .

[35]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[36]  Ioannis Pratikakis,et al.  ICDAR 2009 Document Image Binarization Contest (DIBCO 2009) , 2009, 2009 10th International Conference on Document Analysis and Recognition.

[37]  W. Guitang,et al.  A new method for image segmentation , 2009, 2009 Asia-Pacific Conference on Computational Intelligence and Industrial Applications (PACIIA).

[38]  Sébastien Eskenazi,et al.  A comprehensive survey of mostly textual document segmentation algorithms since 2008 , 2017, Pattern Recognit..

[39]  Anil K. Jain,et al.  Page segmentation using tecture analysis , 1996, Pattern Recognit..

[40]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[41]  Wen Gao,et al.  Fast and robust text detection in images and video frames , 2005, Image Vis. Comput..