Biomass burning contribution to black carbon

Introduction Conclusions References

[1]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[2]  M. V. Ramana,et al.  Warming influenced by the ratio of black carbon to sulphate and the black-carbon source , 2010 .

[3]  J. Randerson,et al.  Assessing variability and long-term trends in burned area by merging multiple satellite fire products , 2009 .

[4]  D. L. Nelson,et al.  Interactive comment on “ The sensitivity of CO and aerosol transport to the temporal and vertical distribution of North American boreal fire emissions ” by Y . , 2009 .

[5]  D. Roy,et al.  An active-fire based burned area mapping algorithm for the MODIS sensor , 2009 .

[6]  Thomas H. Painter,et al.  Springtime warming and reduced snow cover from carbonaceous particles , 2008 .

[7]  D. Spracklen,et al.  Interannual variations in PM2.5 due to wildfires in the Western United States. , 2008, Environmental science & technology.

[8]  Benjamin P. Bryant,et al.  Climate change and wildfire in California , 2008 .

[9]  Mian Chin,et al.  Intercontinental transport of pollution and dust aerosols : implications for regional air quality , 2007 .

[10]  D. Jacob,et al.  Fire and biofuel contributions to annual mean aerosol mass concentrations in the United States. , 2007 .

[11]  M. Witek,et al.  An analysis of seasonal surface dust aerosol concentrations in the western US (2001–2004): Observations and model predictions , 2007 .

[12]  J. Logan,et al.  Wildfires drive interannual variability of organic carbon aerosol in the western U.S. in summer , 2007 .

[13]  G. J. Collatz,et al.  Global Fire Emissions Database, Version 2.1 , 2007 .

[14]  David G. Streets,et al.  Impacts of enhanced biomass burning in the boreal forests in 1998 on tropospheric chemistry and the sensitivity of model results to the injection height of emissions , 2007 .

[15]  Youhua Tang,et al.  Trans‐Pacific transport of black carbon and fine aerosols (D < 2.5 μm) into North America , 2007 .

[16]  Philip J. Rasch,et al.  Present-day climate forcing and response from black carbon in snow , 2006 .

[17]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[18]  T. Swetnam,et al.  Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity , 2006, Science.

[19]  David D. Parrish,et al.  NORTH AMERICAN REGIONAL REANALYSIS , 2006 .

[20]  J. Hansen,et al.  Efficacy of climate forcings , 2005 .

[21]  Tami C Bond,et al.  Can reducing black carbon emissions counteract global warming? , 2005, Environmental science & technology.

[22]  P. Hopke,et al.  Sources of fine particles in a rural midwestern U.S. area. , 2005, Environmental science & technology.

[23]  D. Streets,et al.  A technology‐based global inventory of black and organic carbon emissions from combustion , 2004 .

[24]  L. Horowitz,et al.  Analysis of Seasonal and Inter-Annual Variability in Trans-Pacific Transport , 2004 .

[25]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[26]  Michael Q. Wang,et al.  An inventory of gaseous and primary aerosol emissions in Asia in the year 2000 , 2003 .

[27]  Mian Chin,et al.  Sources of carbonaceous aerosols over the United States and implications for natural visibility , 2003 .

[28]  J. Hansen,et al.  Large historical changes of fossil‐fuel black carbon aerosols , 2003 .

[29]  Konrad Steffen,et al.  Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow , 2002, Science.

[30]  D. Jacob,et al.  Global modeling of tropospheric chemistry with assimilated meteorology : Model description and evaluation , 2001 .

[31]  D. Jacob,et al.  Constraints from 210Pb and 7Be on wet deposition and transport in a global three‐dimensional chemical tracer model driven by assimilated meteorological fields , 2001 .

[32]  M. Jacobson,et al.  Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols , 2022 .

[33]  C. Liousse,et al.  Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model , 1999 .

[34]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[35]  Richard B. Rood,et al.  Three-dimensional radon 222 calculations using assimilated meteorological data and a convective mixing algorithm , 1996 .

[36]  N. McFarlane,et al.  Role of convective scale momentum transport in climate simulation , 1995 .

[37]  W. Malm,et al.  Spatial and seasonal trends in particle concentration and optical extinction in the United States , 1994 .

[38]  Judith C. Chow,et al.  The dri thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air quality studies , 1993 .

[39]  S. Moorthi,et al.  Relaxed Arakawa-Schubert - A parameterization of moist convection for general circulation models , 1992 .

[40]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols , 1980 .

[41]  A. Arakawa,et al.  Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I , 1974 .

[42]  Yuhang Wang,et al.  Nationwide summer peaks of OC/EC ratios in the contiguous United States , 2011 .

[43]  B. Duncan,et al.  Vegetation fire emissions and their impact on air pollution and climate , 2009 .

[44]  Philip K. Hopke,et al.  Estimation of source apportionment and potential source locations of PM2.5 at a west coastal IMPROVE site , 2007 .

[45]  M. Wesely,et al.  SO2, sulfate and HNO3 deposition velocities computed using regional landuse and meteorological data , 1986 .