Fast computation of the performance evaluation of biometric systems: Application to multibiometrics

The performance evaluation of biometric systems is a crucial step when designing and evaluating such systems. The evaluation process uses the Equal Error Rate (EER) metric proposed by the International Organization for Standardization (ISO/IEC). The EER metric is a powerful metric which allows easily comparing and evaluating biometric systems. However, the computation time of the EER is, most of the time, very intensive. In this paper, we propose a fast method which computes an approximated value of the EER. We illustrate the benefit of the proposed method on two applications: the computing of non parametric confidence intervals and the use of genetic algorithms to compute the parameters of fusion functions. Experimental results show the superiority of the proposed EER approximation method in term of computing time, and the interest of its use to reduce the learning of parameters with genetic algorithms. The proposed method opens new perspectives for the development of secure multibiometrics systems by speeding up their computation time.

[1]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[2]  Baptiste Hemery,et al.  Towards the Security Evaluation of Biometric Authentication Systems , 2011 .

[3]  Angela Sasse,et al.  Humans in the Loop Human – Computer Interaction and Security , 2022 .

[4]  Diarmid Marshall,et al.  Usability evaluation of voiceprint authentication in automated telephone banking: Sentences versus digits , 2011, Interact. Comput..

[5]  Jean-Yves Ramel,et al.  User Classification for Keystroke Dynamics Authentication , 2007, ICB.

[6]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Christophe Rosenberger,et al.  Genetic programming for multibiometrics , 2012, Expert Syst. Appl..

[8]  Fabian Monrose,et al.  Keystroke dynamics as a biometric for authentication , 2000, Future Gener. Comput. Syst..

[9]  Dag Sverre,et al.  Fast numerical computations with Cython , 2009 .

[10]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[11]  Arun Ross,et al.  Score normalization in multimodal biometric systems , 2005, Pattern Recognit..

[12]  Mariano Fons,et al.  Biometrics-based consumer applications driven by reconfigurable hardware architectures , 2012, Future Gener. Comput. Syst..

[13]  Ajay Kumar,et al.  Human identification using KnuckleCodes , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[14]  A. Martínez,et al.  The AR face databasae , 1998 .

[15]  Jonathan Earthy,et al.  The Benefits of Using ISO 13407: Human Centred Design Process for Interactive Systems , 2001, INTERACT.

[16]  Baptiste Hemery,et al.  A study of users' acceptance and satisfaction of biometric systems , 2010, 44th Annual 2010 IEEE International Carnahan Conference on Security Technology.

[17]  R. Pearl Biometrics , 1914, The American Naturalist.

[18]  Christophe Rosenberger,et al.  GREYC keystroke: A benchmark for keystroke dynamics biometric systems , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[19]  Andrew Beng Jin Teoh,et al.  Statistical Fusion Approach on Keystroke Dynamics , 2007, 2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System.

[20]  Gian Luca Marcialis,et al.  Adaptive Biometric Systems That Can Improve with Use , 2008 .

[21]  Antonella De Angeli,et al.  Biometric Verification at a Self Service Interface , 2004 .

[22]  Nalini K. Ratha,et al.  An Analysis of Minutiae Matching Strength , 2001, AVBPA.

[23]  Christophe Rosenberger,et al.  Evaluation of Biometric Systems: An SVM-Based Quality index , 2010, ISC 2010.

[24]  B. Granger Ipython: a System for Interactive Scientific Computing Python: an Open and General- Purpose Environment , 2007 .

[25]  Krzysztof Kryszczuk,et al.  Impact of combining quality measures on biometric sample matching , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[26]  Anil K. Jain,et al.  Likelihood Ratio-Based Biometric Score Fusion , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Charles L. Wilson,et al.  A novel approach to fingerprint image quality , 2005, IEEE International Conference on Image Processing 2005.

[28]  Sharath Pankanti,et al.  Biometrics: a grand challenge , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[29]  E.O. Freire,et al.  Multimodal biometric fusion — joint typist (keystroke) and speaker verification , 2006, 2006 International Telecommunications Symposium.

[30]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[31]  Anil K. Jain,et al.  Attacks on biometric systems: a case study in fingerprints , 2004, IS&T/SPIE Electronic Imaging.

[32]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[33]  Julian Fiérrez,et al.  A Comparative Evaluation of Fusion Strategies for Multimodal Biometric Verification , 2003, AVBPA.

[34]  Alessandra Lumini,et al.  An evaluation of direct attacks using fake fingers generated from ISO templates , 2010, Pattern Recognit. Lett..

[35]  Bernadette Dorizzi,et al.  PSO versus AdaBoost for feature selection in multimodal biometrics , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.