Rebuilding the Cepheid Distance Scale. I. A Global Analysis of Cepheid Mean Magnitudes

We develop a statistical method for using multicolor photometry to determine distances using Cepheid variables, including the effects of temperature, extinction, and metallicity, and apply it to UBVRIJHK photometry of 694 Cepheids in 17 galaxies. We derive homogeneous distance, extinction, and uncertainty estimates for four models, starting from the standard extragalactic method and then adding the physical effects of temperature distributions and extinction distributions, requiring positive definite extinctions and metallicity. While we find general agreement with published distances when we make similar systematic assumptions, there is a clear problem in the standard distances because they require Cepheids with negative extinctions, particularly in low-metallicity galaxies, unless the mean LMC extinction exceeds E(B - V) ≳ 0.20. The problem can be explained by the physically expected metallicity dependence of the Cepheid distance scale, where metal-poor Cepheids are hotter and possibly fainter at V and I than metal-rich Cepheids, or by large systematic errors in Cepheid photometry. For V and I we found that the mean magnitude change is -0.14 ± 0.14 mag dex-1 and the mean color change is 0.13 ± 0.04 mag dex-1, with the change in color dominating the change in distance. The effect on Type Ia supernova estimates of the Hubble constant is dramatic because most were found in the metal-poor galaxies with the bluest Cepheids. The Type Ia multicolor light-curve shape method estimate for H0 formally rises from 69 ± 8 to 80 ± 6 km s-1 Mpc-1 with the metallicity correction.

[1]  A. Sandage,et al.  Cepheid Calibration of the Peak Brightness of Type Ia Supernovae. VIII. SN 1990N in NGC 4639 , 2001 .

[2]  Alistair R. Walker,et al.  Cepheids as Distance Indicators , 1999 .

[3]  Observatories of the Carnegie Institution of Washington,et al.  Cepheid Calibration of the Peak Brightness of Type Ia Supernovae. IX. SN 1989B in NGC 3627 , 1999, astro-ph/9904389.

[4]  M. Livio,et al.  The extragalactic distance scale : proceedings of the ST ScI May Symposium, held in Baltimore, MD, May 7-10, 1996 , 1997 .

[5]  Garth D. Illingworth,et al.  The Hubble Space Telescope Extragalactic Distance Scale Key Project. VII. The Discovery of Cepheids in the Leo I Group Galaxy NGC 3351 , 1997 .

[6]  B. Westerlund The Magellanic Clouds , 1997 .

[7]  A. Saha,et al.  Cepheid Calibration of the Peak Brightness of Type Ia Supernovae. VI. SN 1960F in NGC 4496A , 1996 .

[8]  Peter B. Stetson,et al.  ON THE AUTOMATIC DETERMINATION OF LIGHT-CURVE PARAMETERS FOR CEPHEID VARIABLES , 1996 .

[9]  Garth D. Illingworth,et al.  The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. VI. The Cepheids in NGC 925 , 1996 .

[10]  Brian Paul Schmidt,et al.  The atmospheres of type II supernovae and the expanding photosphere method , 1996 .

[11]  P. Harding,et al.  The Extragalactic Distance Scale Key Project. IV. The Discovery of Cepheids and a New Distance to M100 Using the Hubble Space Telescope , 1996 .

[12]  D. Kelson,et al.  The Extragalactic Distance Scale Key Project III. Teh discovery of Cephids and a New Distance to M101 Using the Hubble Space Telescope , 1996 .

[13]  William Press,et al.  A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.

[14]  P. Hoeflich,et al.  Explosion Models for Type IA Supernovae: A Comparison with Observed Light Curves, Distances, H 0, and Q 0 , 1996, astro-ph/9602025.

[15]  J. Fernie The Period-Gravity Relation for Radially Pulsating Variable Stars , 1995 .

[16]  N. Tanvir,et al.  Determination of the Hubble constant from observations of Cepheid variables in the galaxy M96 , 1995, Nature.

[17]  P. Harding,et al.  Limits on the Hubble Constant from the HST Distance of M100 , 1995 .

[18]  R. Hill,et al.  The Hubble Space Telescope extragalactic distance scale key project. 2: Photometry of WFC images of M81 , 1994 .

[19]  Garth D. Illingworth,et al.  The Hubble Space Telescope Extragalactic Distance Scale Key Project. 1: The discovery of Cepheids and a new distance to M81 , 1994 .

[20]  A. Gould THE METALLICITY DEPENDENCE OF INFERRED CEPHEID DISTANCES , 1994 .

[21]  A. Saha,et al.  Discovery of Cepheids in IC 4182: Absolute peak brightness of SN IA 1937C and the value of H[SUB]0[/SUB] , 1994 .

[22]  C. D. Laney,et al.  Cepheid period-luminosity relations in K, H, J and V , 1994 .

[23]  W. Gieren,et al.  The Cepheid period-luminosity relation from independent distances of 100 galactic variables , 1993 .

[24]  C. D. Laney,et al.  Visual and infrared extinction from Cepheid observations , 1993 .

[25]  R. Kennicutt,et al.  Abundances of H II regions in early-type spiral galaxies , 1993 .

[26]  P. Wood,et al.  Theoretical models of Cepheid variables and their BVI(c) colors and magnitudes , 1993 .

[27]  Wendy L. Freedman,et al.  THE CEPHEID DISTANCE SCALE , 1991 .

[28]  B. Madore,et al.  New Cepheid distances to nearby galaxies based on BVRI CCD photometry. II, The Local Group galaxy M33 , 1991 .

[29]  B. Madore,et al.  An empirical test for the metallicity sensitivity of the Cepheid period-luminosity relation , 1990 .

[30]  A. Walker,et al.  Planetary Nebulae as Standard Candles. VI. A Test in the Magellanic Clouds , 1990 .

[31]  J. Fernie The structure of the Cepheid instability strip , 1990 .

[32]  B. Westerlund,et al.  The Magellanic Clouds: their evolution, structure and composition , 1990 .

[33]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[34]  R. Stothers Abundance effects on the Cepheid distance scale , 1988 .

[35]  B. Madore,et al.  Distance Moduli and Structure of the Magellanic Clouds from Near-Infrared Photometry of Classical Cepheids , 1987 .

[36]  J. Caldwell,et al.  Milky Way rotation and the distance to the Galactic center from Cepheid variables , 1987 .

[37]  B. Madore,et al.  Photometric studies of Magellanic Cloud Supergiants. II: variability , 1986 .

[38]  C. D. Laney,et al.  Infrared photometry of Magellanic Cloud Cepheids. Intrinsic properties of Cepheids and the spatial structure of the Clouds , 1986 .

[39]  B. Madore,et al.  Near-Infrared Observations of Cepheids: The Distance to NGC 300 , 1985 .

[40]  Robert P. Kirshner,et al.  Abundance gradients in M31: Comparison of results from supernova remnants and H II regions , 1982 .

[41]  D. Kunth,et al.  Supernova remnants and H II regions in M31 , 1981 .

[42]  S. Bergh,et al.  THE EXTRAGALACTIC DISTANCE SCALE , 1960, astro-ph/9604070.

[43]  E. Böhm-Vitense The First Steps of the Extragalactic Distance Ladder , 1997 .

[44]  D. Backer Diameter and Proper Motion of SGR A , 1996 .

[45]  L. Blitz,et al.  Unsolved Problems of the Milky Way , 1996 .

[46]  K. Kuijken,et al.  UNSOLVED PROBLEMS OF THE MILKY WAY , 1996 .

[47]  A. Saha,et al.  Discovery of Cepheids in NGC 5253: Absolute peak brightness of SN Ia 1895B and SN Ia 1972E and the value of H(sub 0) , 1995 .

[48]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[49]  B. Bohannan IN THE MAGELLANIC CLOUDS , 1990 .

[50]  L. Berdnikov The catalogue of light curves parameters, distances and space co-ordinates of classical cepheids. , 1987 .

[51]  J. Caldwell,et al.  The geometry and distance of the Magellanic Clouds from Cepheid variables , 1986 .

[52]  C. Heiles,et al.  Reddening estimates for galaxies in the Second Reference Catalog and the Uppsala General Catalog , 1984 .