Robot coordination using task-priority and sliding-mode techniques

In this work, an approach based on task-priority redundancy resolution and sliding mode ideas is proposed for robot coordination. In particular, equality and inequality constraints representing the coordination of the multi-robot system are considered as mandatory (for instance, rigid-body manipulation constraints to distance between the end-effectors of several robot arms, or other inequality constraints guaranteeing safe operation of a robotic swarm or confining the robot's workspace to avoid collision and joint limits). Besides the mandatory constraints, other constraints with lower priority are considered for the tracking of the workspace reference and to achieve secondary goals. Thus, lower-priority constraints are satisfied only in the null space of the higher-priority ones. The fulfillment of the constraints is achieved using geometric invariance and sliding mode control theory. The validity and effectiveness of the proposed approach are substantiated by 2D and 3D simulation results using two 3R planar robots and two 6R PUMA-762 robots, respectively.

[1]  G. Oriolo,et al.  Robotics: Modelling, Planning and Control , 2008 .

[2]  H. I. Bozma,et al.  Multirobot coordination in pick-and-place tasks on a moving conveyor , 2012 .

[3]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[4]  CaoY. Uny,et al.  Cooperative Mobile Robotics , 1997 .

[5]  Fabricio Garelli,et al.  Limiting interactions in decentralized control of MIMO systems , 2006 .

[6]  Jesús Picó,et al.  Dynamical Systems Coordination via Sliding Mode Reference Conditioning , 2011 .

[7]  Jorge Angeles,et al.  Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms , 1995 .

[8]  Lynne E. Parker,et al.  Distributed Intelligence: Overview of the Field and Its Application in Multi-Robot Systems , 2008, AAAI Fall Symposium: Regarding the Intelligence in Distributed Intelligent Systems.

[9]  Lynne E. Parker,et al.  Guest editorial advances in multirobot systems , 2002, IEEE Trans. Robotics Autom..

[10]  Edward Tunstel,et al.  Fuzzy behavior hierarchies for multi‐robot control , 2002, Int. J. Intell. Syst..

[11]  Jesús Picó,et al.  Sliding mode reference conditioning for coordination in swarms of non-identical multi-agent systems , 2012, 2012 12th International Workshop on Variable Structure Systems.

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Alex Fukunaga,et al.  Cooperative mobile robotics: antecedents and directions , 1995 .

[14]  Anthony A. Maciejewski,et al.  Numerical filtering for the operation of robotic manipulators through kinematically singular configurations , 1988, J. Field Robotics.

[15]  Luis Gracia,et al.  Integrated sliding-mode algorithms in robot tracking applications , 2013 .

[16]  Lynne E. Parker,et al.  Editorial: Advances in Multi-Robot Systems , 2002 .

[17]  T. Yoshikawa,et al.  Task-Priority Based Redundancy Control of Robot Manipulators , 1987 .

[18]  Michael R. M. Jenkin,et al.  A taxonomy for multi-agent robotics , 1996, Auton. Robots.

[19]  Ian D. Walker,et al.  Overview of damped least-squares methods for inverse kinematics of robot manipulators , 1995, J. Intell. Robotic Syst..

[20]  Francesco Basile,et al.  Task-oriented motion planning for multi-arm robotic systems , 2012 .

[21]  Kang G. Shin,et al.  Direct control and coordination using neural networks , 1993, IEEE Trans. Syst. Man Cybern..

[22]  Luis Gracia,et al.  A supervisory loop approach to fulfill workspace constraints in redundant robots , 2012, Robotics Auton. Syst..

[23]  Giuseppe Oriolo,et al.  Kinematically Redundant Manipulators , 2008, Springer Handbook of Robotics.

[24]  Charles W. Wampler,et al.  Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least-Squares Methods , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  Giorgio Battistelli,et al.  Model-free Adaptive Switching Control of Uncertain Time-Varying Plants , 2011 .

[26]  Jean-Jacques E. Slotine,et al.  A general framework for managing multiple tasks in highly redundant robotic systems , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[27]  Gene H. Golub,et al.  Matrix computations , 1983 .

[28]  Pedro Albertos,et al.  Sliding mode speed auto-regulation technique for robotic tracking , 2011, Robotics Auton. Syst..

[29]  Vijay Kumar,et al.  A Framework and Architecture for Multi-Robot Coordination , 2000, ISER.

[30]  Wisama Khalil,et al.  Modeling, Identification and Control of Robots , 2003 .

[31]  Antonio Sala,et al.  Reactive Sliding-Mode Algorithm for Collision Avoidance in Robotic Systems , 2013, IEEE Transactions on Control Systems Technology.

[32]  Yoshihiko Nakamura,et al.  Inverse kinematic solutions with singularity robustness for robot manipulator control , 1986 .

[33]  Hao-Chi Chang,et al.  Sliding mode control on electro-mechanical systems , 1999 .

[34]  T. Fukuda,et al.  Coordination in evolutionary multi-agent-robotic system using fuzzy and genetic algorithm , 1994 .

[35]  Hernán De Battista,et al.  Advanced Control for Constrained Processes and Systems , 2011 .

[36]  Lynne E. Parker,et al.  Current State of the Art in Distributed Autonomous Mobile Robotics , 2000 .

[37]  Antonio Sala,et al.  A path conditioning method with trap avoidance , 2012, Robotics Auton. Syst..

[38]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[39]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[40]  Steven H. Kim,et al.  Coordination of multiagent systems through explicit valuation of action , 1991 .