DNA topology-mediated control of global gene expression in Escherichia coli.

Because the level of DNA superhelicity varies with the cellular energy charge, it can change rapidly in response to a wide variety of altered nutritional and environmental conditions. This is a global alteration, affecting the entire chromosome and the expression levels of all operons whose promoters are sensitive to superhelicity. In this way, the global pattern of gene expression may be dynamically tuned to changing needs of the cell under a wide variety of circumstances. In this article, we propose a model in which chromosomal superhelicity serves as a global regulator of gene expression in Escherichia coli, tuning expression patterns across multiple operons, regulons, and stimulons to suit the growth state of the cell. This model is illustrated by the DNA supercoiling-dependent mechanisms that coordinate basal expression levels of operons of the ilv regulon both with one another and with cellular growth conditions.

[1]  D. E. Atkinson,et al.  Adenine nucleotide concentrations and turnover rates. Their correlation with biological activity in bacteria and yeast. , 1977, Advances in microbial physiology.

[2]  D. Pettijohn,et al.  Supercoils in prokaryotic DNA restrained in vivo. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. Wells,et al.  Stabilization of Z DNA in vivo by localized supercoiling. , 1989, Science.

[4]  C. Benham,et al.  Torsional stress and local denaturation in supercoiled DNA. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Robert D. Wells,et al.  Left-handed Z-DNA is induced by supercoiling in physiological ionic conditions , 1982, Nature.

[6]  J. Wang,et al.  DNA supercoiling in vivo. , 1988, Biophysical chemistry.

[7]  G. W. Hatfield,et al.  Nucleotide sequence and in vivo expression of the ilvY and ilvC genes in Escherichia coli K12. Transcription from divergent overlapping promoters. , 1986, The Journal of biological chemistry.

[8]  R. J. Franco,et al.  Inhibitors of DNA topoisomerases. , 1988, Biochemistry.

[9]  L. Rothman-Denes,et al.  Supercoil-induced extrusion of a regulatory DNA hairpin. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Gourse,et al.  A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. , 1993, Science.

[11]  H. Westerhoff,et al.  Energy buffering of DNA structure fails when Escherichia coli runs out of substrate , 1995, Journal of bacteriology.

[12]  R. Gourse,et al.  Identification of an UP element consensus sequence for bacterial promoters. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[13]  C. Benham,et al.  Stress-induced duplex DNA destabilization in scaffold/matrix attachment regions. , 1997, Journal of molecular biology.

[14]  P. Sander,et al.  Mechanisms of upstream activation of the rrnD promoter P1 of Escherichia coli. , 1993, The Journal of biological chemistry.

[15]  G W Hatfield,et al.  Activation of Gene Expression by a Ligand-induced Conformational Change of a Protein-DNA Complex* , 1998, The Journal of Biological Chemistry.

[16]  D. Lilley,et al.  The inverted repeat as a recognizable structural feature in supercoiled DNA molecules. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Gellert,et al.  Regulation of the genes for E. coli DNA gyrase: Homeostatic control of DNA supercoiling , 1983, Cell.

[18]  R. Sternglanz,et al.  Escherichia coli DNA topoisomerase I mutants have compensatory mutations at or near DNA gyrase genes. , 1983, Cold Spring Harbor symposia on quantitative biology.

[19]  G. W. Hatfield,et al.  Activation and repression of transcription initiation by a distant DNA structural transition , 2001, Molecular microbiology.

[20]  R. Sinden,et al.  Reduced 4,5',8-trimethylpsoralen cross-linking of left-handed Z-DNA stabilized by DNA supercoiling. , 1987, Biochemistry.

[21]  M. Syvanen,et al.  DNA twist as a transcriptional sensor for environmental changes , 1992, Molecular microbiology.

[22]  M. Inouye,et al.  The cold‐shock response — a hot topic , 1994, Molecular microbiology.

[23]  N. Fujita,et al.  Promoter selectivity of Escherichia coli RNA polymerase E sigma 70 and E sigma 38 holoenzymes. Effect of DNA supercoiling. , 1996, The Journal of biological chemistry.

[24]  G W Hatfield,et al.  Inhibition of DNA Supercoiling-dependent Transcriptional Activation by a Distant B-DNA to Z-DNA Transition* , 1999, The Journal of Biological Chemistry.

[25]  A. Khodursky,et al.  Roles of Topoisomerases in Maintaining Steady-state DNA Supercoiling in Escherichia coli * , 2000, The Journal of Biological Chemistry.

[26]  R. Gourse,et al.  Molecular anatomy of a transcription activation patch: FIS–RNA polymerase interactions at the Escherichia coli rrnB P1 promoter , 1997, The EMBO journal.

[27]  A. Luttinger,et al.  The twisted ‘life’ of DNA in the cell: bacterial topoisomerases , 1995, Molecular microbiology.

[28]  K. Drlica,et al.  Escherichia coli DNA topoisomerase I mutants: Increased supercoiling is corrected by mutations near gyrase genes , 1982, Cell.

[29]  F. Neidhardt,et al.  Induction of proteins in response to low temperature in Escherichia coli , 1987, Journal of bacteriology.

[30]  H V Westerhoff,et al.  Control of DNA structure and gene expression. , 1990, Biomedica biochimica acta.

[31]  C. Laufer,et al.  Genetic analysis of mutations that compensate for loss of Escherichia coli DNA topoisomerase I , 1985, Journal of bacteriology.

[32]  J. Dahlberg,et al.  Topology and formation of triple-stranded H-DNA. , 1989, Science.

[33]  R. Gourse,et al.  The transcriptional activator protein FIS: DNA interactions and cooperative interactions with RNA polymerase at the Escherichia coli rrnB P1 promoter. , 1995, Journal of molecular biology.

[34]  D. E. Atkinson,et al.  Biological feedback control at the molecular level. , 1965, Science.

[35]  R. J. Franco,et al.  Topoisomerase mutations affect the relative abundance of many Escherichia coli proteins , 1993, Molecular microbiology.

[36]  D. E. Atkinson,et al.  Adenylate Energy Charge in Escherichia coli During Growth and Starvation , 1971, Journal of bacteriology.

[37]  A. Ninfa,et al.  DNA supercoiling allows enhancer action over a large distance , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  G. W. Hatfield,et al.  Multivalent translational control of transcription termination at attenuator of ilvGEDA operon of Escherichia coli K-12. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[39]  G. W. Hatfield,et al.  Transcriptional activation at adjacent operators in the divergent-overlapping ilvY and ilvC promoters of Escherichia coli. , 1988, Journal of molecular biology.

[40]  Y. Tse‐Dinh Regulation of the Escherichia coli DNA topoisomerase I gene by DNA supercoiling , 1985, Nucleic Acids Res..

[41]  K. Drlica,et al.  Cross-talk between topoisomerase I and HU in Escherichia coli. , 1996, Journal of molecular biology.

[42]  C. Yanofsky,et al.  Transcription attenuation. , 1988, The Journal of biological chemistry.

[43]  M. Freundlich,et al.  Nucleotide sequence of the ilvB promoter-regulatory region: a biosynthetic operon controlled by attenuation and cyclic AMP. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[44]  S. Wessler,et al.  leu operon of Salmonella typhimurium is controlled by an attenuation mechanism. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[45]  C. Benham,et al.  Energetics of the strand separation transition in superhelical DNA. , 1992, Journal of molecular biology.

[46]  Craig J. Benham,et al.  Theoretical analysis of heteropolymeric transitions in superhelical DNA molecules of specified sequence , 1990 .

[47]  S. Nedospasov,et al.  Histone-like proteins in the purified Escherichia coli deoxyribonucleoprotein. , 1977, Nucleic acids research.

[48]  D. Lilley Understanding DNA: The molecule and how it works , 1993 .

[49]  K. Drlica,et al.  Control of bacterial DNA supercoiling , 1992, Molecular microbiology.

[50]  C. Benham,et al.  Duplex destabilization in superhelical DNA is predicted to occur at specific transcriptional regulatory regions. , 1996, Journal of molecular biology.

[51]  G W Hatfield,et al.  Characterization of the integration host factor binding site in the ilvPG1 promoter region of the ilvGMEDA operon of Escherichia coli. , 1990, The Journal of biological chemistry.

[52]  G W Hatfield,et al.  DNA supercoiling‐dependent transcriptional coupling between the divergently transcribed promoters of the ilvYC operon of Escherichia coli is proportional to promoter strengths and transcript lengths , 2001, Molecular microbiology.

[53]  J. Wang,et al.  Supercoiling of the DNA template during transcription. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[54]  L. Fisher,et al.  An Escherichia coli DNA topoisomerase I mutant has a compensatory mutation that alters two residues between functional domains of the DNA gyrase A protein , 1992, Journal of bacteriology.

[55]  G. W. Hatfield,et al.  Effects of Integration Host Factor and DNA Supercoiling on Transcription from the ilvPG Promoter of Escherichia coli* , 1996, The Journal of Biological Chemistry.

[56]  H. E. Umbarger Regulation of the Biosynthesis of the Branched-Chain Amino Acids , 1969 .

[57]  C. Higgins,et al.  Localized domains of DNA supercoiling: topological coupling between promoters , 1996, Molecular microbiology.

[58]  G W Hatfield,et al.  Transcriptional coupling between the divergent promoters of a prototypic LysR-type regulatory system, the ilvYC operon of Escherichia coli. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Craig J. Benham,et al.  Activation of Gene Expression by a Novel DNA Structural Transmission Mechanism That Requires Supercoiling-induced DNA Duplex Destabilization in an Upstream Activating Sequence* , 1998, The Journal of Biological Chemistry.

[60]  L. Fisher,et al.  Regulation of DNA supercoiling in Escherichia coli: Genetic basis of a compensatory mutation in DNA gyrase , 1989, FEBS letters.

[61]  C. A. Hauser,et al.  Nucleotide sequence of the ilvB multivalent attenuator region of Escherichia coli K12 , 1983, Nucleic Acids Res..

[62]  G. Steger,et al.  Thermal denaturation of double-stranded nucleic acids: prediction of temperatures critical for gradient gel electrophoresis and polymerase chain reaction. , 1994, Nucleic acids research.

[63]  L. Hsieh,et al.  Bacterial DNA supercoiling and [ATP]/[ADP] ratio: changes associated with salt shock , 1991, Journal of bacteriology.

[64]  Miguel Antonio Aon,et al.  Altered topoisomerase activities may be involved in the regulation of DNA supercoiling in aerobic-anaerobic transitions inEscherichia coli , 1993, Molecular and Cellular Biochemistry.

[65]  M. Yaniv,et al.  E. coli DNA binding protein HU forms nucleosome-like structure with circular double-stranded DNA , 1979, Cell.

[66]  H. Blöcker,et al.  Predicting DNA duplex stability from the base sequence. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[67]  M. Zacharias,et al.  Analysis of the Fis-dependent and Fis-independent transcription activation mechanisms of the Escherichia coli ribosomal RNA P1 promoter. , 1992, Biochemistry.

[68]  R. C. Johnson,et al.  DNA binding and bending are necessary but not sufficient for Fis-dependent activation of rrnB P1 , 1993, Journal of bacteriology.

[69]  D. Lockshon,et al.  Escherichia coli DNA topoisomerase III: purification and characterization of a new type I enzyme. , 1984, Biochemistry.

[70]  J. Gralla,et al.  Supercoiling response of the lac ps promoter in vitro. , 1985, Journal of molecular biology.

[71]  K. Drlica,et al.  DNA gyrase, topoisomerase IV, and the 4-quinolones , 1997, Microbiology and molecular biology reviews : MMBR.

[72]  E. L. Zechiedrich,et al.  Topoisomerase IV, alone, unknots DNA in E. coli. , 2001, Genes & development.

[73]  Hongzhi Sun,et al.  Monte Carlo analysis of conformational transitions in superhelical DNA , 1995 .

[74]  C. Calladine,et al.  Understanding DNA: The Molecule & How It Works , 1992 .

[75]  N. Cozzarelli,et al.  Use of site-specific recombination as a probe of DNA structure and metabolism in vivo. , 1987, Journal of molecular biology.

[76]  H. Drew,et al.  Negative supercoiling induces spontaneous unwinding of a bacterial promoter. , 1985, The EMBO journal.

[77]  M. Schell Molecular biology of the LysR family of transcriptional regulators. , 1993, Annual review of microbiology.

[78]  M. Buckle,et al.  FIS activates sequential steps during transcription initiation at a stable RNA promoter , 1997, The EMBO journal.

[79]  Ian R. Booth,et al.  A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli , 1988, Cell.

[80]  H. E. Umbarger,et al.  Nucleotide sequence of ilvGEDA operon attenuator region of Escherichia coli. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[81]  A. Urios,et al.  Expression of the recA gene is reduced in Escherichia coli topoisomerase I mutants. , 1990, Mutation research.

[82]  Y. Tse‐Dinh,et al.  Multiple promoters for transcription of the Escherichia coli DNA topoisomerase I gene and their regulation by DNA supercoiling. , 1988, Journal of molecular biology.

[83]  C. Benham,et al.  Sites of predicted stress-induced DNA duplex destabilization occur preferentially at regulatory loci. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[84]  S Henikoff,et al.  A large family of bacterial activator proteins. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[85]  D. Eick,et al.  Multiple single-stranded cis elements are associated with activated chromatin of the human c-myc gene in vivo , 1996, Molecular and cellular biology.

[86]  R. Gourse,et al.  Both fis-dependent and factor-independent upstream activation of the rrnB P1 promoter are face of the helix dependent. , 1992, Nucleic acids research.

[87]  D. E. Atkinson Regulation of enzyme function. , 1969, Annual review of microbiology.

[88]  Dmitry Pokholok,et al.  Multiple Mechanisms Are Used for Growth Rate and Stringent Control of leuV Transcriptional Initiation inEscherichia coli , 1999, Journal of bacteriology.

[89]  D. Natale,et al.  Stable DNA unwinding, not "breathing," accounts for single-strand-specific nuclease hypersensitivity of specific A+T-rich sequences. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[90]  N. Cozzarelli DNA gyrase and the supercoiling of DNA. , 1980, Science.

[91]  L. Rothman-Denes,et al.  DNA structure and transcription. , 1999, Current opinion in microbiology.

[92]  W. Reznikoff,et al.  Escherichia coli DNA Topoisomerase I and Suppression of Killing by Tn5 Transposase Overproduction: Topoisomerase I Modulates Tn5 Transposition , 1998, Journal of bacteriology.

[93]  C. Benham Theoretical analysis of transitions between B- and Z-conformations in torsionally stressed DNA , 1980, Nature.

[94]  G. W. Hatfield,et al.  The effects of DNA supercoiling on the expression of operons of the ilv regulon of Escherichia coli suggest a physiological rationale for divergently transcribed operons , 2001, Molecular microbiology.

[95]  G. W. Hatfield,et al.  Transcriptional activation by protein-induced DNA bending: evidence for a DNA structural transmission model. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[96]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .

[97]  J. Calvo,et al.  The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli , 1994, Microbiological reviews.

[98]  Craig J. Benham,et al.  Exact method for numerically analyzing a model of local denaturation in superhelically stressed DNA , 1999 .

[99]  J. Rouvière-Yaniv,et al.  Localization of the HU protein on the Escherichia coli nucleoid. , 1978, Cold Spring Harbor symposia on quantitative biology.

[100]  R. Gourse,et al.  Activation of Escherichia coli leuVTranscription by FIS , 1999, Journal of bacteriology.