24-h ambulatory blood pressure is linked to chromosome 18q21-22 and genetic variation of NEDD4L associates with cross-sectional and longitudinal blood pressure in Swedes.

[1]  A. Dominiczak,et al.  2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) , 2007, European heart journal.

[2]  G. Bakris,et al.  Association of NEDD4L Ubiquitin Ligase With Essential Hypertension , 2005, Hypertension.

[3]  J. Pankow,et al.  Further evidence of a quantitative trait locus on chromosome 18 influencing postural change in systolic blood pressure: the Hypertension Genetic Epidemiology Network (HyperGEN) Study. , 2005, American journal of hypertension.

[4]  O. Melander,et al.  Genetic variance of SGK-1 is associated with blood pressure, blood pressure change over time and strength of the insulin-diastolic blood pressure relationship. , 2005, Kidney international.

[5]  L. Groop,et al.  Heritability of ambulatory and office blood pressure phenotypes in Swedish families , 2004, Journal of hypertension.

[6]  S. Priori,et al.  2003 European Society of Hypertension-European Society of Cardiology Guidelines for the Management of Arterial Hypertension , 2004, Heart Drug.

[7]  H. Hense,et al.  Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. , 2003, JAMA.

[8]  J. Pankow,et al.  Common variant of human NEDD4L activates a cryptic splice site to form a frameshifted transcript , 2002, Journal of Human Genetics.

[9]  J. Gulcher,et al.  Linkage of Essential Hypertension to Chromosome 18q , 2002, Hypertension.

[10]  P. Nilsson,et al.  Insulin resistance in non‐diabetic subjects is associated with increased incidence of myocardial infarction and death , 2002, Diabetic medicine : a journal of the British Diabetic Association.

[11]  P. Snyder,et al.  Serum and Glucocorticoid-regulated Kinase Modulates Nedd4-2-mediated Inhibition of the Epithelial Na+Channel* , 2002, The Journal of Biological Chemistry.

[12]  David Pearce,et al.  Phosphorylation of Nedd4‐2 by Sgk1 regulates epithelial Na+ channel cell surface expression , 2001, The EMBO journal.

[13]  G. Berglund,et al.  The Malmö diet and cancer study: representativity, cancer incidence and mortality in participants and non‐participants , 2001, European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation.

[14]  F. McMahon,et al.  NEDD4L on human chromosome 18q21 has multiple forms of transcripts and is a homologue of the mouse Nedd4-2 gene , 2001, European Journal of Human Genetics.

[15]  C. Tauxe,et al.  Distinct characteristics of two human Nedd4 proteins with respect to epithelial Na(+) channel regulation. , 2001, American journal of physiology. Renal physiology.

[16]  E. Ikonen,et al.  Roles of lipid rafts in membrane transport. , 2001, Current opinion in cell biology.

[17]  J. Maccluer,et al.  Genome‐wide linkage analysis of blood pressure in Mexican Americans , 2001, Genetic epidemiology.

[18]  K. Harvey,et al.  The Nedd4-like Protein KIAA0439 Is a Potential Regulator of the Epithelial Sodium Channel* , 2001, The Journal of Biological Chemistry.

[19]  O. Melander Genetic Factors in Hypertension – What is Known and What Does It Mean? , 2001, Blood pressure.

[20]  A. Vandewalle,et al.  A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[21]  J. Pankow,et al.  Possible Locus on Chromosome 18q Influencing Postural Systolic Blood Pressure Changes , 2000, Hypertension.

[22]  L. Traub,et al.  Sorting in the endosomal system in yeast and animal cells. , 2000, Current opinion in cell biology.

[23]  P. Verkade,et al.  Apical Membrane Targeting of Nedd4 Is Mediated by an Association of Its C2 Domain with Annexin Xiiib , 2000, The Journal of cell biology.

[24]  L Kruglyak,et al.  Exact multipoint quantitative-trait linkage analysis in pedigrees by variance components. , 2000, American journal of human genetics.

[25]  D. Levy,et al.  Trends in the prevalence of hypertension, antihypertensive therapy, and left ventricular hypertrophy from 1950 to 1989. , 1999, The New England journal of medicine.

[26]  L. Farrer,et al.  Autosomal dominant orthostatic hypotensive disorder maps to chromosome 18q. , 1998, American journal of human genetics.

[27]  M. Lazdunski,et al.  Genetic analysis of the beta subunit of the epithelial Na+ channel in essential hypertension. , 1998, Hypertension.

[28]  L. Groop,et al.  Mutations and variants of the epithelial sodium channel gene in Liddle's syndrome and primary hypertension. , 1998, Hypertension.

[29]  H. Yeger,et al.  The C2 Domain of the Ubiquitin Protein Ligase Nedd4 Mediates Ca2+-dependent Plasma Membrane Localization* , 1997, The Journal of Biological Chemistry.

[30]  S. Jacob,et al.  Insulin Resistance, Hyperinsulinemia, and Blood Pressure Role of Age and Obesity , 1997 .

[31]  L Kruglyak,et al.  Parametric and nonparametric linkage analysis: a unified multipoint approach. , 1996, American journal of human genetics.

[32]  K. Eriksson,et al.  Cardiovascular risk groups and mortality in an urban Swedish male population: the Malmö Preventive Project , 1996, Journal of internal medicine.

[33]  B. Brenner,et al.  Hypertension: Pathophysiology, Diagnosis, and Management , 1994 .

[34]  G. Berglund,et al.  Design and feasibility , 1993 .

[35]  G. Abecasis,et al.  Merlin—rapid analysis of dense genetic maps using sparse gene flow trees , 2002, Nature Genetics.

[36]  G. Abecasis,et al.  A general test of association for quantitative traits in nuclear families. , 2000, American journal of human genetics.

[37]  R. Ward Familial aggregation and genetic epidemiology of blood pressure , 1990 .