Design, synthesis, and biophysical and biological evaluation of a series of pyrrolobenzodiazepine-poly(N-methylpyrrole) conjugates.

A novel series of methyl ester-terminated C8-linked pyrrolobenzodiazepine (PBD)-poly(N-methylpyrrole) conjugates (50a-f) has been synthesized and their DNA interaction evaluated by thermal denaturation, DNA footprinting, and in vitro transcription stop assays. The synergistic effect of attaching a PBD unit to a polypyrrole fragment is illustrated by the large increase in DNA binding affinity (up to 50-fold) compared to the individual PBD and pyrrole components. 50a-f were found to bind mainly to identical DNA sequences but with apparent binding site widths increasing with molecular length and the majority of sites conforming to the consensus motif 5'-XGXWz (z = 3 +/- 1; W = A or T; X = any base but preferably a purine). They also provided robust sequence-selective blockade of transcription at sites corresponding approximately to their DNA footprints. 50a-f were shown to have good cellular/nuclear penetration properties, and a degree of correlation between cytotoxicity and DNA-binding affinity was observed.