A New Foundation for Finitary Corecursion and Iterative Algebras

This paper contributes to a theory of the behaviour of "finite-state" systems that is generic in the system type. We propose that such systems are modeled as coalgebras with a finitely generated carrier for an endofunctor on a locally finitely presentable category. Their behaviour gives rise to a new fixpoint of the coalgebraic type functor called locally finite fixpoint (LFF). We prove that if the given endofunctor preserves monomorphisms then the LFF always exists and is a subcoalgebra of the final coalgebra (unlike the rational fixpoint previously studied by Ad\'amek, Milius, and Velebil). Moreover, we show that the LFF is characterized by two universal properties: (1) as the final locally finitely generated coalgebra, and (2) as the initial fg-iterative algebra. As instances of the LFF we first obtain the known instances of the rational fixpoint, e.g. regular languages, rational streams and formal power-series, regular trees etc. And we obtain a number of new examples, e.g. (realtime deterministic resp. non-deterministic) context-free languages, constructively S-algebraic formal power-series (and any other instance of the generalized powerset construction by Silva, Bonchi, Bonsangue, and Rutten) and the monad of Courcelle's algebraic trees.

[1]  Jirí Adámek,et al.  Fixed points of functors , 2018, J. Log. Algebraic Methods Program..

[2]  Jirí Adámek,et al.  On second-order iterative monads , 2011, Theor. Comput. Sci..

[3]  Stefan Milius,et al.  The Category Theoretic Solution of Recursive Program Schemes , 2005, CALCO.

[4]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[5]  Gordon D. Plotkin,et al.  Combining effects: Sum and tensor , 2006, Theor. Comput. Sci..

[6]  Jirí Adámek,et al.  Elgot theories: a new perspective on the equational properties of iteration , 2011, Math. Struct. Comput. Sci..

[7]  J. Lambek A fixpoint theorem for complete categories , 1968 .

[8]  G. Kelly A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on , 1980, Bulletin of the Australian Mathematical Society.

[9]  F. Bartels On generalised coinduction and probabilistic specification formats : Distributive laws in coalgebraic modelling , 2004 .

[10]  Marcello M. Bonsangue,et al.  Coalgebraic Characterizations of Context-Free Languages , 2013, Log. Methods Comput. Sci..

[11]  Gordon D. Plotkin,et al.  Towards a mathematical operational semantics , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[12]  Jirí Adámek,et al.  Iterative algebras at work , 2006, Mathematical Structures in Computer Science.

[13]  Jan J. M. M. Rutten,et al.  Automata and Coinduction (An Exercise in Coalgebra) , 1998, CONCUR.

[14]  C. C. Elgot Monadic Computation And Iterative Algebraic Theories , 1982 .

[15]  M. Droste,et al.  Handbook of Weighted Automata , 2009 .

[16]  Peter Aczel,et al.  Infinite trees and completely iterative theories: a coalgebraic view , 2003, Theor. Comput. Sci..

[17]  Alexandra Silva,et al.  Non-Deterministic Kleene Coalgebras , 2010, Log. Methods Comput. Sci..

[18]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[19]  Marcello M. Bonsangue,et al.  Context-free coalgebras , 2015, J. Comput. Syst. Sci..

[20]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[21]  Jurriaan Rot,et al.  Coalgebraic Bisimulation-Up-To , 2013, SOFSEM.

[22]  Bruno Courcelle,et al.  Fundamental Properties of Infinite Trees , 1983, Theor. Comput. Sci..

[23]  Stefan Milius,et al.  Finitary Corecursion for the Infinitary Lambda Calculus , 2015, CALCO.

[24]  Bartek Klin,et al.  Bialgebras for structural operational semantics: An introduction , 2011, Theor. Comput. Sci..

[25]  Ivan M. Havel,et al.  Real-Time Strict Deterministic Languages , 1972, SIAM J. Comput..

[26]  Steve Awodey,et al.  Category Theory , 2006 .

[27]  Alexandra Silva,et al.  Generalizing determinization from automata to coalgebras , 2013, Log. Methods Comput. Sci..

[28]  Stefan Milius,et al.  A New Foundation for Finitary Corecursion - The Locally Finite Fixpoint and Its Properties , 2016, FoSSaCS.

[29]  Susanna Ginali,et al.  Regular Trees and the Free Iterative Theory , 1979, J. Comput. Syst. Sci..

[30]  Alexandra Silva,et al.  Sound and Complete Axiomatizations of Coalgebraic Language Equivalence , 2011, TOCL.

[31]  Alexandra Silva,et al.  Quantitative Kleene coalgebras , 2011, Inf. Comput..

[32]  M. Fliess,et al.  Sur divers produits de séries formelles , 1974 .

[33]  Jirí Adámek,et al.  Semantics of Higher-Order Recursion Schemes , 2009, CALCO.

[34]  Stefan Milius Completely iterative algebras and completely iterative monads , 2005, Inf. Comput..

[35]  Jiří Adámek,et al.  Free algebras and automata realizations in the language of categories , 1974 .

[36]  Stefan Milius,et al.  Proper Functors and Fixed Points for Finite Behaviour , 2017, Log. Methods Comput. Sci..

[37]  S. Lack,et al.  Introduction to extensive and distributive categories , 1993 .

[38]  P. Gabriel,et al.  Lokal α-präsentierbare Kategorien , 1971 .

[39]  Stefan Milius,et al.  Proper Functors and their Rational Fixed Point , 2017, CALCO.

[40]  M. Barr Coequalizers and free triples , 1970 .

[41]  Bart Jacobs,et al.  A Bialgebraic Review of Regular Expressions, Deterministic Automata and Languages , 2005 .

[42]  Stefan Milius A Sound and Complete Calculus for Finite Stream Circuits , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[43]  Felix Hueber,et al.  Locally Presentable And Accessible Categories , 2016 .

[44]  Edmund F. Robertson,et al.  On Subsemigroups of Finitely Presented Semigroups , 1996 .

[45]  Pietro Cenciarelli,et al.  A Syntactic Approach to Modularity in Denotational Semantics , 1993 .

[46]  Sergey Goncharov Trace Semantics via Generic Observations , 2013, CALCO.

[47]  Z. Ésik,et al.  Iteration Theories: The Equational Logic of Iterative Processes , 1993 .

[48]  Jurriaan Rot,et al.  On the specification of operations on the rational behaviour of systems , 2012, EXPRESS/SOS.

[49]  Alexandra Silva,et al.  Towards a Coalgebraic Chomsky Hierarchy , 2014, ArXiv.

[50]  Christoph Lüth,et al.  Monads of coalgebras: rational terms and term graphs , 2005, Math. Struct. Comput. Sci..

[51]  Stefan Milius,et al.  On Finitary Functors and Finitely Presentable Algebras , 2019 .

[52]  I. Petre,et al.  Algebraic Systems and Pushdown Automata , 2009 .

[53]  Jirí Adámek,et al.  Equational properties of iterative monads , 2010, Inf. Comput..

[54]  Henning Urbat Finite Behaviours and Finitary Corecursion , 2017, CALCO.