Creep fatigue models of solder joints: A critical review

Abstract The goal of creep fatigue modelling is the compounding of the damage caused by creep and fatigue mechanisms. The different approaches for compounding these damage mechanisms have led to several different creep fatigue models: (i) ignore fatigue damage — the creep ductility (energy density) exhaustion models; (ii) lumping plastic and creep strain (energy) into inelastic strain (energy) — the model of Dauvearx's crack initiation and propagation; (iii) linearly sum fatigue and creep damage — the model of linear damage summation; (iv) model creep and fatigue damage using a common parameter — the models of fracture mechanics; (v) partition damage into fatigue, cyclic creep, and cyclic creep-fatigue interaction — strain range/energy partitioning models; (vi) model creep and fatigue damage using a common parameter at rates that are dependent on the current state of damage — the model unified damage; (vii) model creep and fatigue damage using separate damage parameters — the mechanism based model; and (viii) integrate creep damage into the fatigue equation — creep modified strain-life equations. The rigour of the approaches increases from (i) to (vii). The creep modified strain-life equation requires no evaluation of creep strain and facilitates design analysis and evaluation of acceleration factors; however, its rigour depends on the choice of the creep functions. The unified equation is capable of covering the full spectrum of creep-fatigue from pure fatigue to pure creep rupture.

[1]  Carl E. Jaske,et al.  A CRACK-TIP-ZONE INTERACTION MODEL FOR CREEP-FATIGUE CRACK GROWTH , 1983 .

[2]  A. Syed Accumulated creep strain and energy density based thermal fatigue life prediction models for SnAgCu solder joints , 2004, 2004 Proceedings. 54th Electronic Components and Technology Conference (IEEE Cat. No.04CH37546).

[3]  Robert Darveaux,et al.  Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction , 2002 .

[4]  S. Manson,et al.  Creep-fatigue analysis by strain-range partitioning. , 1971 .

[5]  Robert A. Ainsworth,et al.  Flaw Assessment Procedure for High-Temperature Reactor Components , 1992 .

[6]  Hasan U. Akay,et al.  Fatigue Life Predictions for Thermally Loaded Solder Joints Using a Volume-Weighted Averaging Technique , 1997 .

[7]  F. Hauser,et al.  Deformation and Fracture Mechanics of Engineering Materials , 1976 .

[8]  C. W. Nelson,et al.  Thermal stress in bonded joints , 1979 .

[9]  Jean-Louis Chaboche,et al.  ASPECT PHENOMENOLOGIQUE DE LA RUPTURE PAR ENDOMMAGEMENT , 1978 .

[10]  Z Duan,et al.  Strain Energy Partitioning Approach and Its Application to Low Cycle Fatigue Life Prediction for Some Heat-Resistant Alloys , 1988 .

[11]  E. G. Ellison,et al.  Fracture and life prediction under thermal-mechanical strain cycling , 1994 .

[12]  W. Ramberg,et al.  Description of Stress-Strain Curves by Three Parameters , 1943 .

[13]  D. J. White,et al.  Observations of the Effect of Creep Relaxation on High-Strain Fatigue: , 1966 .

[14]  Walter Schütz,et al.  A history of fatigue , 1996 .

[15]  D. L. Marriott,et al.  Design for creep , 1972 .

[16]  F. H. Norton,et al.  The Creep of Steel at High Temperatures , 2017 .

[17]  Z. P. Wang,et al.  Creep Behavior and Deformation Mechanism Map of Sn-Pb Eutectic Solder Alloy , 2003 .

[18]  Tsung-Yu Pan,et al.  Critical Accumulated Strain Energy (Case) Failure Criterion for Thermal Cycling Fatigue of Solder Joints , 1994 .

[19]  Ephraim Suhir,et al.  Interfacial Stresses in Bimetal Thermostats , 1989 .

[20]  S. Manson Behavior of materials under conditions of thermal stress , 1953 .

[21]  E G Ellison,et al.  Creep behaviour of components containing cracks—a critical review , 1978 .

[22]  E.H. Wong,et al.  Fracture mechanics study of fatigue crack growth in solder joints under drop impact , 2008, 2008 58th Electronic Components and Technology Conference.

[23]  H.L.J. Pang,et al.  Low cycle fatigue analysis of temperature and frequency effects in eutectic solder alloy , 2000 .

[24]  W. Engelmaier Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling , 1983 .

[25]  Yi-Shao Lai,et al.  Stress–Strain Characteristics of Tin-Based Solder Alloys for Drop-Impact Modeling , 2008 .

[26]  L. Anand Constitutive equations for hot-working of metals , 1985 .

[27]  M. Shine,et al.  Fatigue of solder joints in surface mount devices , 1988 .

[28]  O. Basquin The exponential law of endurance tests , 1910 .

[29]  S. S. Manson,et al.  A linear time-temperature relation for extrapolation of creep and stress-rupture data , 1953 .

[30]  David R Hayhurst,et al.  Creep in Structures , 1981 .

[31]  R. D. Campbell,et al.  Creep/Fatigue Interaction Correlation for 304 Stainless Steel Subjected to Strain-Controlled Cycling With Hold Times at Peak Strain , 1971 .

[32]  N. S. Swansson,et al.  Thermo-Mechanical Fatigue Life Prediction: A Critical Review , 1998 .

[33]  E. Wong,et al.  Thermal stresses in the discrete joints of sandwiched structures , 2015 .

[34]  Jr. L. F. Coffin Fatigue at High Temperature , 2013 .

[35]  Jean Lemaitre,et al.  Application of Damage Concepts to Predict Creep-Fatigue Failures , 1979 .

[36]  Michael Pecht,et al.  Solder Creep-Fatigue Analysis by an Energy-Partitioning Approach , 1992 .

[37]  R. Brook,et al.  Cumulative Damage in Fatigue: A Step towards Its Understanding , 1969 .

[38]  Guna S Selvaduray,et al.  Solder joint fatigue models: review and applicability to chip scale packages , 2000 .

[39]  J. E. Dorn,et al.  CORRELATIONS OF RUPTURE DATA FOR METALS AT ELEVATED TEMPERATURES , 1953 .

[40]  T.C. Taylor,et al.  Thermal stress and fracture in shear-constrained semiconductor device structures , 1962, IRE Transactions on Electron Devices.

[41]  V.P.W. Shim,et al.  Fatigue crack propagation behavior of lead-free solder joints under high-strain-rate cyclic loading , 2008 .

[42]  S. Knecht,et al.  Constitutive relation and creep-fatigue life model for eutectic tin-lead solder , 1990 .

[43]  A. Bakker Mechanical Behaviour of Materials , 1995 .

[44]  Lf Coffin,et al.  FATIGUE AT HIGH TEMPERATURE , 2013 .

[45]  Yiu-Wing Mai,et al.  Analytical Solutions for PCB Assembly Subjected to Mismatched Thermal Expansion , 2009, IEEE Transactions on Advanced Packaging.

[46]  L. Coffin,et al.  A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal , 1954, Journal of Fluids Engineering.

[47]  Yiu-Wing Mai,et al.  A unified equation for creep-fatigue , 2014 .