Generalized eigenvalue problems with specified eigenvalues

We consider the distance from a (square or rectangular) matrix pencil to the nearest matrix pencil in 2-norm that has a set of specied eigenvalues. We derive a singular value optimization characterization for this problem and illustrate its usefulness for two applications. First, the characterization yields a singular value formula for determining the nearest pencil whose eigenvalues lie in a specied region in the complex plane. For instance, this enables the numerical computation of the nearest stable descriptor system in control theory. Second, the characterization partially solves the problem posed in [Boutry et al. 2005] regarding the distance from a general rectangular pencil to the nearest pencil with a complete set of eigenvalues. The involved singular value optimization problems are solved by means of BFGS and Lipschitz-based global optimization algorithms.

[1]  Хаким Дододжанович Икрамов,et al.  О расстоянии до ближайшей матрицы с тройным собственным значением нуль@@@On the Distance to the Closest Matrix with Triple Zero Eigenvalue , 2003 .

[2]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[3]  Kim-Chuan Toh,et al.  Calculation of Pseudospectra by the Arnoldi Iteration , 1996, SIAM J. Sci. Comput..

[4]  C. T. Kelley,et al.  Modifications of the direct algorithm , 2001 .

[5]  Zhongxiao Jia,et al.  An analysis of the Rayleigh-Ritz method for approximating eigenspaces , 2001, Math. Comput..

[6]  Stephen P. Boyd,et al.  A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L/sub infinity /-norm , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[7]  S. A. Piyavskii An algorithm for finding the absolute extremum of a function , 1972 .

[8]  C. Loan How Near is a Stable Matrix to an Unstable Matrix , 1984 .

[9]  Michael Elad,et al.  Shape from moments - an estimation theory perspective , 2004, IEEE Transactions on Signal Processing.

[10]  A. Bunse-Gerstner,et al.  Numerical computation of an analytic singular value decomposition of a matrix valued function , 1991 .

[11]  R. Lippert Fixing two eigenvalues by a minimal perturbation , 2005 .

[12]  Tomaž Košir,et al.  Kronecker Bases for Linear Matrix Equations, With Application to Two-Parameter Eigenvalue Problems , 1996 .

[13]  James Hardy Wilkinson,et al.  Kronecker''s canonical form and the QZ algorithm , 1979 .

[14]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[15]  Juan-Miguel Gracia,et al.  Nearest matrix with two prescribed eigenvalues , 2005 .

[16]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[17]  S. Boyd,et al.  A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm , 1990 .

[18]  K. Ikramov,et al.  Justification of a Malyshev-Type Formula in the Nonnormal Case , 2005 .

[19]  R. Lippert Fixing multiple eigenvalues by a minimal perturbation , 2010 .

[20]  Adrian S. Lewis,et al.  Pseudospectral Components and the Distance to Uncontrollability , 2005, SIAM J. Matrix Anal. Appl..

[21]  Nancy Nichols,et al.  On the stability radius of a generalized state-space system , 1993 .

[22]  F Rikus Eising,et al.  Between controllable and uncontrollable , 1984 .

[23]  Fernando Paganini,et al.  A Course in Robust Control Theory , 2000 .

[24]  Emre Mengi Nearest Linear Systems with Highly Deficient Reachable Subspaces , 2012, SIAM J. Matrix Anal. Appl..

[25]  On the Stability Radius of Generalized State-space Systems , 1993 .

[26]  R. Alam,et al.  On sensitivity of eigenvalues and eigendecompositions of matrices , 2005 .

[27]  Alexander N. Malyshev,et al.  A formula for the 2-norm distance from a matrix to the set of matrices with multiple eigenvalues , 1999, Numerische Mathematik.

[28]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[29]  K. Ikramov,et al.  On the Distance to the Closest Matrix with Triple Zero Eigenvalue , 2003 .

[30]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[31]  F. R. Gantmakher The Theory of Matrices , 1984 .

[32]  R. Byers A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices , 1988 .

[33]  B. Shubert A Sequential Method Seeking the Global Maximum of a Function , 1972 .

[34]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[35]  M. Overton NONSMOOTH OPTIMIZATION VIA BFGS , 2008 .

[36]  Alan Edelman,et al.  The dimension of matrices (matrix pencils) with given Jordan (Kronecker) canonical forms , 1995 .

[37]  Michael Elad,et al.  The Generalized Eigenvalue Problem for Nonsquare Pencils Using a Minimal Perturbation Approach , 2005, SIAM J. Matrix Anal. Appl..

[38]  P. Psarrakos,et al.  The distance from a matrix polynomial to matrix polynomials with a prescribed multiple eigenvalue , 2008 .

[39]  Emre Mengi,et al.  Locating a nearest matrix with an eigenvalue of prespecified algebraic multiplicity , 2011, Numerische Mathematik.