Generalized eigenvalue problems with specified eigenvalues
暂无分享,去创建一个
Daniel Kressner | Emre Mengi | Ninoslav Truhar | Ivica Nakic | D. Kressner | E. Mengi | N. Truhar | Ivica Nakic | Ivica Nakić
[1] Хаким Дододжанович Икрамов,et al. О расстоянии до ближайшей матрицы с тройным собственным значением нуль@@@On the Distance to the Closest Matrix with Triple Zero Eigenvalue , 2003 .
[2] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[3] Kim-Chuan Toh,et al. Calculation of Pseudospectra by the Arnoldi Iteration , 1996, SIAM J. Sci. Comput..
[4] C. T. Kelley,et al. Modifications of the direct algorithm , 2001 .
[5] Zhongxiao Jia,et al. An analysis of the Rayleigh-Ritz method for approximating eigenspaces , 2001, Math. Comput..
[6] Stephen P. Boyd,et al. A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L/sub infinity /-norm , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.
[7] S. A. Piyavskii. An algorithm for finding the absolute extremum of a function , 1972 .
[8] C. Loan. How Near is a Stable Matrix to an Unstable Matrix , 1984 .
[9] Michael Elad,et al. Shape from moments - an estimation theory perspective , 2004, IEEE Transactions on Signal Processing.
[10] A. Bunse-Gerstner,et al. Numerical computation of an analytic singular value decomposition of a matrix valued function , 1991 .
[11] R. Lippert. Fixing two eigenvalues by a minimal perturbation , 2005 .
[12] Tomaž Košir,et al. Kronecker Bases for Linear Matrix Equations, With Application to Two-Parameter Eigenvalue Problems , 1996 .
[13] James Hardy Wilkinson,et al. Kronecker''s canonical form and the QZ algorithm , 1979 .
[14] L. Mirsky,et al. The Theory of Matrices , 1961, The Mathematical Gazette.
[15] Juan-Miguel Gracia,et al. Nearest matrix with two prescribed eigenvalues , 2005 .
[16] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[17] S. Boyd,et al. A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm , 1990 .
[18] K. Ikramov,et al. Justification of a Malyshev-Type Formula in the Nonnormal Case , 2005 .
[19] R. Lippert. Fixing multiple eigenvalues by a minimal perturbation , 2010 .
[20] Adrian S. Lewis,et al. Pseudospectral Components and the Distance to Uncontrollability , 2005, SIAM J. Matrix Anal. Appl..
[21] Nancy Nichols,et al. On the stability radius of a generalized state-space system , 1993 .
[22] F Rikus Eising,et al. Between controllable and uncontrollable , 1984 .
[23] Fernando Paganini,et al. A Course in Robust Control Theory , 2000 .
[24] Emre Mengi. Nearest Linear Systems with Highly Deficient Reachable Subspaces , 2012, SIAM J. Matrix Anal. Appl..
[25] On the Stability Radius of Generalized State-space Systems , 1993 .
[26] R. Alam,et al. On sensitivity of eigenvalues and eigendecompositions of matrices , 2005 .
[27] Alexander N. Malyshev,et al. A formula for the 2-norm distance from a matrix to the set of matrices with multiple eigenvalues , 1999, Numerische Mathematik.
[28] J. Frédéric Bonnans,et al. Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.
[29] K. Ikramov,et al. On the Distance to the Closest Matrix with Triple Zero Eigenvalue , 2003 .
[30] C. D. Perttunen,et al. Lipschitzian optimization without the Lipschitz constant , 1993 .
[31] F. R. Gantmakher. The Theory of Matrices , 1984 .
[32] R. Byers. A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices , 1988 .
[33] B. Shubert. A Sequential Method Seeking the Global Maximum of a Function , 1972 .
[34] Jorge Nocedal,et al. On the limited memory BFGS method for large scale optimization , 1989, Math. Program..
[35] M. Overton. NONSMOOTH OPTIMIZATION VIA BFGS , 2008 .
[36] Alan Edelman,et al. The dimension of matrices (matrix pencils) with given Jordan (Kronecker) canonical forms , 1995 .
[37] Michael Elad,et al. The Generalized Eigenvalue Problem for Nonsquare Pencils Using a Minimal Perturbation Approach , 2005, SIAM J. Matrix Anal. Appl..
[38] P. Psarrakos,et al. The distance from a matrix polynomial to matrix polynomials with a prescribed multiple eigenvalue , 2008 .
[39] Emre Mengi,et al. Locating a nearest matrix with an eigenvalue of prespecified algebraic multiplicity , 2011, Numerische Mathematik.