Design and Applications of a 300–800 MHz Tunable Matching Network

In this paper, the optimized design, characterization and applications of a broadband 300-800 MHz (~ 91% fractional bandwidth) digitally-controlled tunable matching network is presented. The design employs PIN diodes as switching components and a repetitive structure of basic cells using lumped reactive elements. After an intensive and complex optimization process, a Smith chart coverage (return losses better than 10 dB and losses lower than 2 dB) above 60% is obtained in all the bandwidth reaching 75% in the middle of the band (400-700 MHz). The potential of the manufactured tunable matching network for antenna mismatch compensation, antenna bandwidth extension and power amplifier efficiency improvement in back-off is showed.

[1]  D. A. Frickey Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances , 1994 .

[2]  A. Akhnoukh,et al.  Varactor Topologies for RF Adaptivity with Improved Power Handling and Linearity , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[3]  H. Okazaki,et al.  A 0.9-5- GHz Wide-Range 1W-Class Reconfigurable Power Amplifier Employing RF-MEMS Switches , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[4]  P. Ferrari,et al.  Complete Design and Measurement Methodology for a Tunable RF Impedance-Matching Network , 2008, IEEE Transactions on Microwave Theory and Techniques.

[5]  Dylan Kelly,et al.  RF Front-End Tunability for LTE Handset Applications , 2010, 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[6]  Gabriel M. Rebeiz,et al.  A 20-50 GHz RF MEMS single-stub impedance tuner , 2005, IEEE Microwave and Wireless Components Letters.

[7]  Pedro L. Carro,et al.  Figures of merit and performance measurements for RF and microwave tunable matching networks , 2011, 2011 6th European Microwave Integrated Circuit Conference.

[8]  Chaitali Chakrabarti,et al.  Cognitive Radio , 2020, 2020 2nd Al-Noor International Conference for Science and Technology (NICST).

[9]  Bernd Geck,et al.  A novel inverse class-D output matching network and its application to dynamic load modulation , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[10]  T. Maehata,et al.  A novel tunable matching network for dynamic load modulation of high power amplifiers , 2012, 2012 42nd European Microwave Conference.

[11]  H. Okazaki,et al.  A 900/1500/2000-MHz triple-band reconfigurable power amplifier employing RF-MEMS switches , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[12]  Arthur S. Morris,et al.  High performance tuners for handsets , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[13]  D. Youla,et al.  A New Theory of Broad-band Matching , 1964 .

[14]  Dylan Kelly,et al.  CMOS based Tunable Matching Networks for cellular handset applications , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[15]  Bertan Bakkaloglu,et al.  AUTOMATICALLY TUNING ANTENNA FOR SOFTWARE-DEFINED AND COGNITIVE RADIO , 2005 .

[16]  Peter Sjöblom,et al.  Measured CMOS Switched High-Quality Capacitors in a Reconfigurable Matching Network , 2007, IEEE Trans. Circuits Syst. II Express Briefs.

[17]  Joseph Mitola,et al.  The software radio architecture , 1995, IEEE Commun. Mag..

[18]  R.R. Mansour,et al.  Design Methodology and Optimization of Distributed MEMS Matching Networks for Low-Microwave-Frequency Applications , 2009, IEEE Transactions on Microwave Theory and Techniques.

[19]  H. Zirath,et al.  Design of Varactor-Based Tunable Matching Networks for Dynamic Load Modulation of High Power Amplifiers , 2009, IEEE Transactions on Microwave Theory and Techniques.

[20]  L.P. Ligthart,et al.  Analysis of Mobile Phone Antenna Impedance Variations With User Proximity , 2007, IEEE Transactions on Antennas and Propagation.

[21]  Paloma Garcia Ducar,et al.  Performance improvement of mobile DVB-H terminals using a reconfigurable impedance tuning network , 2009, IEEE Transactions on Consumer Electronics.

[22]  V. Rahmat-Samii,et al.  Genetic algorithms in engineering electromagnetics , 1997 .

[23]  Paloma Garcia Ducar,et al.  Antenna effects in DVB-H mobile rebroadcasters , 2009, IEEE Transactions on Consumer Electronics.

[24]  P. Garcia,et al.  An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system , 2004, IEEE Transactions on Microwave Theory and Techniques.

[25]  R. Weigel,et al.  Circuit Agility , 2012, IEEE Microwave Magazine.

[26]  K. R. Boyle,et al.  A self-contained adaptive antenna tuner for mobile phones: Featuring a self-learning calibration procedure , 2012, 2012 6th European Conference on Antennas and Propagation (EUCAP).

[27]  D. Peroulis,et al.  Design of Adaptive Highly Efficient GaN Power Amplifier for Octave-Bandwidth Application and Dynamic Load Modulation , 2012, IEEE Transactions on Microwave Theory and Techniques.

[28]  C. Samuelsson,et al.  RF MEMS based impedance matching networks for tunable multi-band microwave low noise amplifiers , 2009, 2009 International Semiconductor Conference.

[29]  Yichuang Sun,et al.  Adaptive impedance matching and antenna tuning for green software-defined and cognitive radio , 2011, 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS).

[30]  A. Akhnoukh,et al.  Adaptive Multi-Band Multi-Mode Power Amplifier Using Integrated Varactor-Based Tunable Matching Networks , 2006, IEEE Journal of Solid-State Circuits.

[31]  A.H.M. van Roermund,et al.  RF-MEMS based adaptive antenna matching module , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[32]  Romain Pilard,et al.  30 dBm P 1db and 4 dB insertion losses optimized 4G antenna tuner fully integrated in a 130 nm CMOS SOI technology , 2013 .

[33]  Pedro L. Carro,et al.  Automated design of optimized tunable matching networks in the UHF band , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[34]  N.S. Barker,et al.  Distributed MEMS tunable matching network using minimal-contact RF-MEMS varactors , 2006, IEEE Transactions on Microwave Theory and Techniques.