Modeling and Control of Roller Compaction for Pharmaceutical Manufacturing

Roller compaction is the major process of dry granulation which is attractive to heat or moisture-sensitive pharmaceutical products. Currently, the product quality of roller compaction is analyzed off-line in the quality control lab. In this work, we demonstrate how online process control can be applied on roller compaction using the simulator built in Part I of this paper. Different control strategies are discussed: multi-loop proportional–integral–derivative, linear model predictive control (MPC), and nonlinear MPC. The MPC strategy provides a systematic approach to design the multivariable control system. The simulation results show that the linear MPC can serve as a high-performance control strategy for roller compaction with the trade-off between the control performance and computational complexity. Such enhanced process control facilitates the FDA’s process analysis technology initiative.

[1]  Tor Arne Johansen,et al.  Approximate explicit receding horizon control of constrained nonlinear systems , 2004, Autom..

[2]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[3]  Thomas F. Edgar,et al.  Process Dynamics and Control , 1989 .

[4]  K. Morris,et al.  Real-time near-infrared monitoring of content uniformity, moisture content, compact density, tensile strength, and Young's modulus of roller compacted powder blends. , 2005, Journal of pharmaceutical sciences.

[5]  William L. Luyben,et al.  Simple method for tuning SISO controllers in multivariable systems , 1986 .

[6]  Francis J. Doyle,et al.  Efficient optimization approaches to nonlinear model predictive control , 2003 .

[7]  Hannu T. Toivonen,et al.  A neural network model predictive controller , 2006 .

[8]  Alberto Bemporad,et al.  Model predictive control based on linear programming - the explicit solution , 2002, IEEE Transactions on Automatic Control.

[9]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[10]  S. Joe Qin,et al.  An Overview of Nonlinear Model Predictive Control Applications , 2000 .

[11]  J. Remon,et al.  The roller compaction of different types of lactose. , 1998 .

[12]  K. Morris,et al.  Effect of the variation in the ambient moisture on the compaction behavior of powder undergoing roller-compaction and on the characteristics of tablets produced from the post-milled granules. , 2005, Journal of pharmaceutical sciences.

[13]  Manfred Morari,et al.  State-space interpretation of model predictive control , 1994, Autom..

[14]  Pradeep B. Deshpande Multivariable process control , 1989 .

[15]  S. Inghelbrecht Instrumentation of a roll compactor and the evaluation of the parameter settings by neural networks , 1997 .

[16]  Eduardo F. Camacho,et al.  Model Predictive Controllers , 2007 .

[17]  Thomas Parisini,et al.  A receding-horizon regulator for nonlinear systems and a neural approximation , 1995, Autom..

[18]  Lorenz T. Biegler,et al.  Efficient Solution of Dynamic Optimization and NMPC Problems , 2000 .

[19]  Sigurd Skogestad,et al.  Limitations of dynamic matrix control , 1995 .

[20]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[21]  Aidan O'Dwyer,et al.  PI and PID controller tuning rules for time delay processes: a summary , 1999 .

[22]  Aidan O'Dwyer,et al.  A Summary of PI and PID Controller Tuning Rules for Processes with Time Delay. Part 1: PI Controller Tuning Rules , 2000 .

[23]  T. Johansen,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[24]  B. Foss,et al.  A new optimization algorithm with application to nonlinear MPC , 2004 .

[25]  F. Allgower,et al.  Efficient output feedback nonlinear model predictive control , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[26]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .

[27]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[28]  Max Donath,et al.  American Control Conference , 1993 .

[29]  Toshiyuki Ohtsuka,et al.  A continuation/GMRES method for fast computation of nonlinear receding horizon control , 2004, Autom..

[30]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects , 2003, Comput. Chem. Eng..

[31]  Hans Bock,et al.  A Direct Multiple Shooting Method for Real-Time Optimization of Nonlinear DAE Processes , 2000 .

[32]  A. Zheng,et al.  A computationally efficient nonlinear MPC algorithm , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[33]  E. Bristol On a new measure of interaction for multivariable process control , 1966 .

[34]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization: Part II: Software aspects and applications , 2003, Comput. Chem. Eng..

[35]  J. Rawlings,et al.  The stability of constrained receding horizon control , 1993, IEEE Trans. Autom. Control..