Picoseconds all-optical switch and pulse re-shaper based in a bistable Bragg grating cavity

We study numerically nonlinear pulse propagation in a phase-shifted Bragg grating with a π phase-shift. The phase-shift acts as a cavity, accumulating the field inside the grating, and hence improving the switching efficiency. Due to material nonlinearity such cavity can operate in a bistable regime, enabling all-optical switching between high and low transmission states. We give optimization criteria for grating design that reduce the switching threshold and minimize the response time of the device. We demonstrate that if the grating and the pulse parameters are chosen carefully, a temporal reshaping of the transmitted pulse occurs. An asymmetric shape of the output pulse is an indication of the pulse self-switching between the two states of a bistable Bragg cavity.

[1]  S. Jensen,et al.  Optical bistability , 1982, IEEE Journal of Quantum Electronics.

[2]  M. Martinelli,et al.  All-optical switching in phase-shifted fiber Bragg grating , 2000, IEEE Photonics Technology Letters.

[3]  Bowden,et al.  Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials. , 1994, Physical review letters.

[4]  Ping Lu,et al.  Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation. , 2003 .

[5]  Edward H. Sargent,et al.  Stable all-optical limiting in nonlinear periodic structures. I. Analysis , 2002 .

[6]  Govind P. Agrawal,et al.  Theory of low-threshold optical switching in nonlinear phase-shifted periodic structures , 1995 .

[7]  Govind P. Agrawal,et al.  Nonlinear switching of optical pulses in fiber Bragg gratings , 2003 .

[8]  T. Mizumoto,et al.  All-optical transistor operation based on the bistability principle in nonlinear distributed feedback GaInAsP-InP waveguide: a transient perspective , 2007 .

[9]  M. S. Malcuit,et al.  Optical bistability in nonlinear periodic structures. , 1993, Optics letters.

[10]  B. Eggleton,et al.  All-optical self-switching in optimized phase-shifted fiber Bragg grating. , 2009, Optics express.

[11]  Elsa Garmire,et al.  Theory of bistability in nonlinear distributed feedback structures (A) , 1979 .

[12]  Sipe,et al.  Switching dynamics of finite periodic nonlinear media: A numerical study. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[13]  Thomas G. Brown,et al.  All‐optical switching in a nonlinear periodic‐waveguide structure , 1992 .

[14]  R. Kashyap Fiber Bragg Gratings , 1999 .

[15]  T G Brown,et al.  Optical switching in phase-shifted metal-semiconductor-metal Bragg reflectors. , 1995, Optics letters.

[16]  Kenneth R. Jackson,et al.  Nonlinear coupled-mode equations on a finite interval : a numerical procedure , 1991 .

[17]  B. Eggleton,et al.  Performance of field-enhanced optical switching in fiber Bragg gratings , 2010 .

[18]  Govind P. Agrawal,et al.  Optical switching in lambda/4-shifted nonlinear periodic structures. , 1994, Optics letters.

[19]  Abdolnasser Zakery,et al.  Optical properties and applications of chalcogenide glasses: a review , 2003 .

[20]  D. Marcuse Theory of dielectric optical waveguides , 1974 .

[21]  C. Martijn de Sterke,et al.  Dispersionless slow light using gap solitons , 2006 .

[22]  T. Erdogan Fiber grating spectra , 1997 .

[23]  Benjamin J. Eggleton,et al.  Nonlinear pulse propagation in Bragg gratings , 1997 .

[24]  Sophie LaRochelle,et al.  All-optical switching of grating transmission using cross-phase modulation in optical fibres , 1990 .