Is mathematical history written by the victors

The ABCs of the History of Infinitesimal Mathematics The ABCs of the history of infinitesimal mathematics are in need of clarification. To what extent does the famous dictum “history is always written by the victors” apply to the history of mathematics as well? A convenient starting point is a remark made by Felix Klein in his book Elementary Mathematics from an Advanced Standpoint (Klein [72, p. 214]). Klein wrote that there are not one but two separate tracks for the development of analysis:

[1]  David Sherry Zeno's Metrical Paradox Revisited , 1988, Philosophy of Science.

[2]  D. Laugwitz Early delta functions and the use of infinitesimals in research , 1992 .

[3]  J. Bair,et al.  Classroom Capsules , 2008 .

[4]  David Sherry,et al.  The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .

[5]  Henk J. M. Bos,et al.  Differentials, higher-order differentials and the derivative in the Leibnizian calculus , 1974 .

[6]  Mikhail G. Katz,et al.  Commuting and Noncommuting Infinitesimals , 2013, Am. Math. Mon..

[7]  Errett Bishop The crisis in contemporary mathematics , 1975 .

[8]  Robert Ely Loss of Dimension in the History of Calculus and in Student Reasoning , 2012, The Mathematics Enthusiast.

[9]  Herbert Meschkowski Aus den Briefbüchern Georg Cantors , 1965 .

[10]  Mikhail G. Katz,et al.  Infinitesimals, Imaginaries, Ideals, and Fictions , 2012 .

[11]  M. J. Sheehan Differentials , 1964 .

[12]  Hisahiro Tamano,et al.  On Rings of Real Valued Continuous Functions , 1958 .

[13]  R. Núñez,et al.  Embodied cognition as grounding for situatedness and context in mathematics education , 1999 .

[14]  J. Bair,et al.  From Newton’s fluxions to virtual microscopes , 2006 .

[15]  Ivor Grattan-Guinness,et al.  From the calculus to set theory, 1630-1910 : an introductory history , 1985 .

[16]  Lorenzo Magnani,et al.  Perceiving the Infinite and the Infinitesimal World: Unveiling and Optical Diagrams in Mathematics , 2005 .

[17]  G. Vlastos,et al.  The Presocratic Philosophers , 1959 .

[18]  Errett Bishop,et al.  Mathematics as a Numerical Language , 1970 .

[19]  Mikhail G. Katz,et al.  Zooming in on infinitesimal 1–.9.. in a post-triumvirate era , 2010, 1003.1501.

[20]  Hermann Hankel,et al.  Zur Geschichte der Mathematik in Alterthum und Mittelalter , 1874 .

[21]  Carlo Proietti Natural Numbers and Infinitesimals: A Discussion between Benno Kerry and Georg Cantor , 2008 .

[22]  R. McClenon Sherlock Holmes in Babylon: A Contribution of Leibniz to the History of Complex Numbers , 1923 .

[23]  T. Tho EQUIVOCATION IN THE FOUNDATIONS OF LEIBNIZ’S INFINITESIMAL FICTIONS , 2012 .

[24]  S. Segal Plato's Ghost: The Modernist Transformation of Mathematics , 2010 .

[25]  Vladimir Kanovei,et al.  Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics , 2012, 1211.0244.

[26]  Kajsa Bråting,et al.  A new look at E.G. Björling and the Cauchy sum theorem , 2007 .

[27]  Mikhail G. Katz,et al.  Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.

[28]  Edwin Hewitt,et al.  Rings of real-valued continuous functions. I , 1948 .

[29]  David Mumford,et al.  Intuition and rigor and Enriques's quest , 2011 .

[30]  Mikhail G. Katz,et al.  A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.

[31]  Mikhail G. Katz,et al.  Leibniz's laws of continuity and homogeneity , 2012, 1211.7188.

[32]  D. Morgan L. On the early history of infinitesimals in England , 1852 .

[33]  R. H.,et al.  The Principles of Mathematics , 1903, Nature.

[34]  M. McKinzie,et al.  Hidden lemmas in Euler's summation of the reciprocals of the squares , 1997 .

[35]  Jeremy Gray A short life of Euler , 2008 .

[36]  Herbert Breger The mysteries of adaequare: A vindication of fermat , 1994 .

[37]  W. Luxemburg Non-Standard Analysis , 1977 .

[38]  D. Hilbert Les principes fondamentaux de la géométrie , 1900 .

[39]  T. Skolem Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen , 1934 .

[40]  Vladimir Kanovei,et al.  Nonstandard Analysis, Axiomatically , 2004 .

[41]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[42]  Richard T. W. Arthur Leibniz’s syncategorematic infinitesimals , 2013 .

[43]  Douglas M. Jesseph,et al.  Leibniz on The Elimination of Infinitesimals , 2015 .

[44]  H. Keisler THE ULTRAPRODUCT CONSTRUCTION , 2009 .

[45]  Patrick Riley,et al.  Leibniz's Philosophy of Logic and Language , 1973 .

[46]  Alexandre Borovik,et al.  Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.

[47]  D. Laugwitz Hidden lemmas in the early history of infinite series , 1987 .

[48]  Mikhail G. Katz,et al.  Cauchy's Continuum , 2011, Perspectives on Science.

[49]  J. Bair,et al.  Analyse infinitésimale : Le Calculus redécouvert , 2008 .

[50]  R. Solovay A model of set-theory in which every set of reals is Lebesgue measurable* , 1970 .

[51]  K. Gödel,et al.  Review of Skolem's Über die Unmöglichkeit Einer Vollständigen Charakterisierung der Zahlenreihe Mittels Eines Endlichen Axiomensystems , 1990 .

[52]  Jerzy Loś,et al.  Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .

[53]  Mikhail G. Katz,et al.  A cognitive analysis of Cauchy’s conceptions of function, continuity, limit and infinitesimal, with implications for teaching the calculus , 2014 .

[54]  Peter Vickers Understanding Inconsistent Science , 2013 .

[55]  Patrick Reeder Infinitesimals for Metaphysics: Consequences for the Ontologies of Space and Time , 2012 .

[56]  David Tall,et al.  A Cauchy-Dirac Delta Function , 2012, 1206.0119.

[57]  D. Laugwitz Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .

[58]  Mikhail G. Katz,et al.  Ten Misconceptions from the History of Analysis and Their Debunking , 2012, 1202.4153.

[59]  Paolo Mancosu Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century , 1996 .

[60]  E. Seneta Cauchy, Augustin–Louis , 2006 .

[61]  Leonard Euler,et al.  Introduction to Analysis of the Infinite: Book I , 1988, The Mathematical Gazette.

[62]  Mikhail G. Katz,et al.  Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.

[63]  A. Macintyre Abraham Robinson, 1918–1974 , 1977 .

[64]  Th. Skolem,et al.  Peano's Axioms and Models of Arithmetic , 1955 .

[65]  W. Parkhurst,et al.  Infinity and the Infinitesimal: Part One , 1925 .

[66]  P. Zsombor-Murray,et al.  Elementary Mathematics from an Advanced Standpoint , 1940, Nature.

[67]  Saharon Shelah,et al.  A definable nonstandard model of the reals , 2004, J. Symb. Log..

[68]  G. Granger Philosophie et mathématique leibniziennes , 1981 .

[69]  Kirsti Andersen One of Berkeleys arguments on compensating errors in the calculus , 2011 .

[70]  E. Bishop Differentiable manifolds in complex Euclidean space , 1965 .

[71]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[72]  G. Ferraro Differentials and differential coefficients in the Eulerian foundations of the calculus , 2004 .

[73]  T. Mormann,et al.  Infinitesimals as an Issue of Neo-Kantian Philosophy of Science , 2013, HOPOS: The Journal of the International Society for the History of Philosophy of Science.

[74]  Lorenzo Magnani,et al.  Mathematics through Diagrams: Microscopes in Non-Standard and Smooth Analysis , 2007, Model-Based Reasoning in Science, Technology, and Medicine.

[75]  Mikhail G. Katz,et al.  Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.

[76]  Philip Ehrlich,et al.  The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .

[77]  The correctness of Euler's method for the factorization of the sine function into an infinite product , 1988 .

[78]  Frederik Herzberg Stochastic Calculus with Infinitesimals , 2013, Lecture notes in mathematics.

[79]  Hide Ishiguro,et al.  Leibniz's Philosophy of Logic and Language , 1972 .

[80]  Karin U. Katz,et al.  When is .999... less than 1? , 2010, The Mathematics Enthusiast.

[81]  Stephen W. Hawking,et al.  God Created the Integers: The Mathematical Breakthroughs That Changed History , 2005 .

[82]  Leif Arkeryd Nonstandard Analysis , 2005, Am. Math. Mon..

[83]  M. Kline Mathematics: The Loss of Certainty , 1982 .

[84]  C. Cerroni The contributions of Hilbert and Dehn to non-archimedean geometries and their impact on the italian school , 2007 .