Is mathematical history written by the victors
暂无分享,去创建一个
Piotr Blaszczyk | Vladimir Kanovei | Mikhail G. Katz | Karin U. Katz | David Sherry | Semen S. Kutateladze | Jacques Bair | Robert Ely | S. Kutateladze | V. Kanovei | David Sherry | S. Shnider | Valerie Henry | Thomas Mcgaffey | David M. Schaps | Steven Shnider | M. Katz | Piotr Błaszczyk | D. Schaps | J. Bair | R. Ely | T. Mcgaffey | V. Henry | Semen Samsonovich Kutateladze
[1] David Sherry. Zeno's Metrical Paradox Revisited , 1988, Philosophy of Science.
[2] D. Laugwitz. Early delta functions and the use of infinitesimals in research , 1992 .
[3] J. Bair,et al. Classroom Capsules , 2008 .
[4] David Sherry,et al. The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .
[5] Henk J. M. Bos,et al. Differentials, higher-order differentials and the derivative in the Leibnizian calculus , 1974 .
[6] Mikhail G. Katz,et al. Commuting and Noncommuting Infinitesimals , 2013, Am. Math. Mon..
[7] Errett Bishop. The crisis in contemporary mathematics , 1975 .
[8] Robert Ely. Loss of Dimension in the History of Calculus and in Student Reasoning , 2012, The Mathematics Enthusiast.
[9] Herbert Meschkowski. Aus den Briefbüchern Georg Cantors , 1965 .
[10] Mikhail G. Katz,et al. Infinitesimals, Imaginaries, Ideals, and Fictions , 2012 .
[11] M. J. Sheehan. Differentials , 1964 .
[12] Hisahiro Tamano,et al. On Rings of Real Valued Continuous Functions , 1958 .
[13] R. Núñez,et al. Embodied cognition as grounding for situatedness and context in mathematics education , 1999 .
[14] J. Bair,et al. From Newton’s fluxions to virtual microscopes , 2006 .
[15] Ivor Grattan-Guinness,et al. From the calculus to set theory, 1630-1910 : an introductory history , 1985 .
[16] Lorenzo Magnani,et al. Perceiving the Infinite and the Infinitesimal World: Unveiling and Optical Diagrams in Mathematics , 2005 .
[17] G. Vlastos,et al. The Presocratic Philosophers , 1959 .
[18] Errett Bishop,et al. Mathematics as a Numerical Language , 1970 .
[19] Mikhail G. Katz,et al. Zooming in on infinitesimal 1–.9.. in a post-triumvirate era , 2010, 1003.1501.
[20] Hermann Hankel,et al. Zur Geschichte der Mathematik in Alterthum und Mittelalter , 1874 .
[21] Carlo Proietti. Natural Numbers and Infinitesimals: A Discussion between Benno Kerry and Georg Cantor , 2008 .
[22] R. McClenon. Sherlock Holmes in Babylon: A Contribution of Leibniz to the History of Complex Numbers , 1923 .
[23] T. Tho. EQUIVOCATION IN THE FOUNDATIONS OF LEIBNIZ’S INFINITESIMAL FICTIONS , 2012 .
[24] S. Segal. Plato's Ghost: The Modernist Transformation of Mathematics , 2010 .
[25] Vladimir Kanovei,et al. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics , 2012, 1211.0244.
[26] Kajsa Bråting,et al. A new look at E.G. Björling and the Cauchy sum theorem , 2007 .
[27] Mikhail G. Katz,et al. Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.
[28] Edwin Hewitt,et al. Rings of real-valued continuous functions. I , 1948 .
[29] David Mumford,et al. Intuition and rigor and Enriques's quest , 2011 .
[30] Mikhail G. Katz,et al. A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.
[31] Mikhail G. Katz,et al. Leibniz's laws of continuity and homogeneity , 2012, 1211.7188.
[32] D. Morgan. L. On the early history of infinitesimals in England , 1852 .
[33] R. H.,et al. The Principles of Mathematics , 1903, Nature.
[34] M. McKinzie,et al. Hidden lemmas in Euler's summation of the reciprocals of the squares , 1997 .
[35] Jeremy Gray. A short life of Euler , 2008 .
[36] Herbert Breger. The mysteries of adaequare: A vindication of fermat , 1994 .
[37] W. Luxemburg. Non-Standard Analysis , 1977 .
[38] D. Hilbert. Les principes fondamentaux de la géométrie , 1900 .
[39] T. Skolem. Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen , 1934 .
[40] Vladimir Kanovei,et al. Nonstandard Analysis, Axiomatically , 2004 .
[41] W. Heitler. The Principles of Quantum Mechanics , 1947, Nature.
[42] Richard T. W. Arthur. Leibniz’s syncategorematic infinitesimals , 2013 .
[43] Douglas M. Jesseph,et al. Leibniz on The Elimination of Infinitesimals , 2015 .
[44] H. Keisler. THE ULTRAPRODUCT CONSTRUCTION , 2009 .
[45] Patrick Riley,et al. Leibniz's Philosophy of Logic and Language , 1973 .
[46] Alexandre Borovik,et al. Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.
[47] D. Laugwitz. Hidden lemmas in the early history of infinite series , 1987 .
[48] Mikhail G. Katz,et al. Cauchy's Continuum , 2011, Perspectives on Science.
[49] J. Bair,et al. Analyse infinitésimale : Le Calculus redécouvert , 2008 .
[50] R. Solovay. A model of set-theory in which every set of reals is Lebesgue measurable* , 1970 .
[51] K. Gödel,et al. Review of Skolem's Über die Unmöglichkeit Einer Vollständigen Charakterisierung der Zahlenreihe Mittels Eines Endlichen Axiomensystems , 1990 .
[52] Jerzy Loś,et al. Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .
[53] Mikhail G. Katz,et al. A cognitive analysis of Cauchy’s conceptions of function, continuity, limit and infinitesimal, with implications for teaching the calculus , 2014 .
[54] Peter Vickers. Understanding Inconsistent Science , 2013 .
[55] Patrick Reeder. Infinitesimals for Metaphysics: Consequences for the Ontologies of Space and Time , 2012 .
[56] David Tall,et al. A Cauchy-Dirac Delta Function , 2012, 1206.0119.
[57] D. Laugwitz. Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .
[58] Mikhail G. Katz,et al. Ten Misconceptions from the History of Analysis and Their Debunking , 2012, 1202.4153.
[59] Paolo Mancosu. Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century , 1996 .
[60] E. Seneta. Cauchy, Augustin–Louis , 2006 .
[61] Leonard Euler,et al. Introduction to Analysis of the Infinite: Book I , 1988, The Mathematical Gazette.
[62] Mikhail G. Katz,et al. Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.
[63] A. Macintyre. Abraham Robinson, 1918–1974 , 1977 .
[64] Th. Skolem,et al. Peano's Axioms and Models of Arithmetic , 1955 .
[65] W. Parkhurst,et al. Infinity and the Infinitesimal: Part One , 1925 .
[66] P. Zsombor-Murray,et al. Elementary Mathematics from an Advanced Standpoint , 1940, Nature.
[67] Saharon Shelah,et al. A definable nonstandard model of the reals , 2004, J. Symb. Log..
[68] G. Granger. Philosophie et mathématique leibniziennes , 1981 .
[69] Kirsti Andersen. One of Berkeleys arguments on compensating errors in the calculus , 2011 .
[70] E. Bishop. Differentiable manifolds in complex Euclidean space , 1965 .
[71] Andrew Lesniewski,et al. Noncommutative Geometry , 1997 .
[72] G. Ferraro. Differentials and differential coefficients in the Eulerian foundations of the calculus , 2004 .
[73] T. Mormann,et al. Infinitesimals as an Issue of Neo-Kantian Philosophy of Science , 2013, HOPOS: The Journal of the International Society for the History of Philosophy of Science.
[74] Lorenzo Magnani,et al. Mathematics through Diagrams: Microscopes in Non-Standard and Smooth Analysis , 2007, Model-Based Reasoning in Science, Technology, and Medicine.
[75] Mikhail G. Katz,et al. Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.
[76] Philip Ehrlich,et al. The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .
[77] The correctness of Euler's method for the factorization of the sine function into an infinite product , 1988 .
[78] Frederik Herzberg. Stochastic Calculus with Infinitesimals , 2013, Lecture notes in mathematics.
[79] Hide Ishiguro,et al. Leibniz's Philosophy of Logic and Language , 1972 .
[80] Karin U. Katz,et al. When is .999... less than 1? , 2010, The Mathematics Enthusiast.
[81] Stephen W. Hawking,et al. God Created the Integers: The Mathematical Breakthroughs That Changed History , 2005 .
[82] Leif Arkeryd. Nonstandard Analysis , 2005, Am. Math. Mon..
[83] M. Kline. Mathematics: The Loss of Certainty , 1982 .
[84] C. Cerroni. The contributions of Hilbert and Dehn to non-archimedean geometries and their impact on the italian school , 2007 .