An Optimal Algorithm for Closest-Pair Maintenance

Abstract. Given a set S of n points in {k} -dimensional space, and an Lt metric, the dynamic closest-pair problem is defined as follows: find a closest pair of S after each update of S (the insertion or the deletion of a point). For fixed dimension {k} and fixed metric Lt , we give a data structure of size O(n) that maintains a closest pair of S in O(log n) time per insertion and deletion. The running time of the algorithm is optimal up to a constant factor because Ω (log n) is a lower bound, in an algebraic decision-tree model of computation, on the time complexity of any algorithm that maintains the closest pair (for k=1 ). The algorithm is based on the fair-split tree. The constant factor in the update time is exponential in the dimension. We modify the fair-split tree to reduce it.

[1]  Pravin M. Vaidya An optimal allorithm for the All-Nearest-Neilhbors problem , 1986 .

[2]  Sergei Bespamyatnikh Dynamic Algorithms for Approximate Neighbor Searching , 1996 .

[3]  Roberto Tamassia,et al.  Combine and Conquer: a General Technique for Dynamic Algorithms (Extended Abstract) , 1993, ESA.

[4]  Michiel H. M. Smid Dynamic Rectangular Point Location, with an Application to the Closest Pair Problem , 1995, Inf. Comput..

[5]  Michiel H. M. Smid,et al.  Simple Randomized Algorithms for Closest Pair Problems , 1995, Nord. J. Comput..

[6]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[7]  Michael T. Goodrich,et al.  Topology B-Trees and Their Applications , 1995, WADS.

[8]  Michiel H. M. Smid,et al.  An O(n log n log log n) Algorithm for the On-Line Closest Pair Problem , 1992, SODA.

[9]  Sergei Bespamyatnikh The Region Approach for some Dynamic Closest-Point Problems. , 1994 .

[10]  S. Rao Kosaraju,et al.  A decomposition of multi-dimensional point-sets with applications to k-nearest-neighbors and n-body potential fields (preliminary version) , 1992, STOC '92.

[11]  Sergey Bereg An Optimal Algorithm for Dynamic Post-office Problem in R21 and Related Problems , 1996, CCCG.

[12]  Greg N. Frederickson,et al.  A data structure for dynamically maintaining rooted trees , 1997, SODA '93.

[13]  S. Rao Kosaraju,et al.  Algorithms for dynamic closest pair and n-body potential fields , 1995, SODA '95.

[14]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[15]  Michiel H. M. Smid Maintaining the minimal distance of a point set in polylogarithmic time , 1991, SODA '91.

[16]  Michiel H. M. Smid,et al.  New techniques for exact and approximate dynamic closest-point problems , 1994, SCG '94.

[17]  Paul B. Callahan,et al.  Dealing with higher dimensions: the well-separated pair decomposition and its applications , 1995 .

[18]  Jeffrey S. Salowe Shallow Interdistnace Selection and Interdistance Enumeration , 1991, WADS.

[19]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[20]  Kenneth J. Supowit,et al.  New techniques for some dynamic closest-point and farthest-point problems , 1990, SODA '90.

[21]  Christian Schwarz,et al.  Data structures and algorithms for the dynamic closest pair problem , 1993 .

[22]  M. Smid Maintaining the minimal distance of a point set in less than linear time , 1990 .

[23]  Michiel H. M. Smid,et al.  Randomized data structures for the dynamic closest-pair problem , 1998, SODA '93.

[24]  Michiel H. M. Smid,et al.  Enumerating the k closest pairs optimally , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[25]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[26]  Roberto Tamassia,et al.  A unified approach to dynamic point location, ray shooting, and shortest paths in planar maps , 1996, SODA '93.

[27]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.

[28]  Michiel H. M. Smid Rectangular Point Location and the Dynamic Closest Pair Problem , 1991, ISA.

[29]  Robert E. Tarjan,et al.  Biased Search Trees , 1985, SIAM J. Comput..

[30]  Pravin M. Vaidya,et al.  AnO(n logn) algorithm for the all-nearest-neighbors Problem , 1989, Discret. Comput. Geom..

[31]  Michael Ian Shamos,et al.  Divide-and-conquer in multidimensional space , 1976, STOC '76.