暂无分享,去创建一个
[1] Xin Zhang,et al. A conjecture on equitable vertex arboricity of graphs , 2012, ArXiv.
[2] Xin Zhang. Drawing complete multipartite graphs on the plane with restrictions on crossings , 2013, ArXiv.
[3] Guanghui Wang,et al. Equitable vertex arboricity of 5-degenerate graphs , 2017, J. Comb. Optim..
[4] Oleg V. Borodin. A new proof of the 6 color theorem , 1995, J. Graph Theory.
[5] G. Ringel. Ein Sechsfarbenproblem auf der Kugel , 1965 .
[6] D. Král,et al. Coloring plane graphs with independent crossings , 2010 .
[7] Giuseppe Liotta,et al. An annotated bibliography on 1-planarity , 2017, Comput. Sci. Rev..
[8] Xin Zhang. Equitable vertex arboricity of subcubic graphs , 2016, Discret. Math..
[9] Xin Zhang,et al. Equitable vertex arboricity of graphs , 2013, Discret. Math..
[10] Svante Janson,et al. The Chromatic Number , 2011 .
[11] Xin Zhang,et al. Equitable partition of graphs into induced linear forests , 2020, J. Comb. Optim..
[12] Yan Li,et al. Equitable vertex arboricity of $d$-degenerate graphs , 2019, ArXiv.
[13] Bi Li,et al. Tree-coloring problems of bounded treewidth graphs , 2019, J. Comb. Optim..
[14] J. A. Bondy,et al. Graph Theory , 2008, Graduate Texts in Mathematics.
[15] Louis Esperet,et al. Equitable partition of graphs into induced forests , 2015, Discret. Math..
[16] André Raspaud,et al. Acyclic colouring of 1-planar graphs , 2001, Discret. Appl. Math..
[17] Hal A. Kierstead,et al. A note on relaxed equitable coloring of graphs , 2011, Inf. Process. Lett..
[18] P. Lax. Proof of a conjecture of P. Erdös on the derivative of a polynomial , 1944 .
[19] Xin Zhang. Equitable vertex arboricity of planar graphs , 2014, ArXiv.