High-Fidelity Numerical Simulation and Experimental Validation of a 1600-Mm-Diameter Axial Loaded Grid Stiffened Cylindrical Shell

[1]  P. Hao,et al.  Knockdown factor of buckling load for axially compressed cylindrical shells: state of the art and new perspectives , 2022, Acta Mechanica Sinica.

[2]  Zhiping Chen,et al.  Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 1: Experimental study , 2021 .

[3]  P. Hao,et al.  Incomplete reduced stiffness method for imperfection sensitivity of cylindrical shells , 2020 .

[4]  Peng Hao,et al.  Experimental validation of cylindrical shells under axial compression for improved knockdown factors , 2019, International Journal of Solids and Structures.

[5]  Gang Li,et al.  Improved knockdown factors for composite cylindrical shells with delamination and geometric imperfections , 2019, Composites Part B: Engineering.

[6]  C. Hühne,et al.  Towards robust knockdown factors for the design of conical shells under axial compression , 2018, International Journal of Mechanical Sciences.

[7]  John W. Hutchinson,et al.  Imperfections and energy barriers in shell buckling , 2018, International Journal of Solids and Structures.

[8]  Christian Hühne,et al.  Robust knockdown factors for the design of cylindrical shells under axial compression: Analysis and modeling of stiffened and unstiffened cylinders , 2018, Thin-Walled Structures.

[9]  Mohammad Rouhi,et al.  Design, manufacturing, and testing of a variable stiffness composite cylinder , 2018 .

[10]  M. W. Hilburger,et al.  Test and Analysis of Buckling-Critical Stiffened Metallic Launch Vehicle Cylinders , 2018 .

[11]  M. W. Hilburger,et al.  Design of Buckling-Critical Large-Scale Sandwich Composite Cylinder Test Articles , 2018 .

[12]  M. W. Hilburger,et al.  Buckling Response of a Large-Scale, Seamless, Orthogrid-Stiffened Metallic Cylinder , 2018 .

[13]  Richard Degenhardt,et al.  Buckling of axially compressed CFRP cylinders with and without additional lateral load: Experimental and numerical investigation , 2017 .

[14]  S. Pellegrino,et al.  Experiments on imperfection insensitive axially loaded cylindrical shells , 2017 .

[15]  Christian Hühne,et al.  Stimulating the realistic worst case buckling scenario of axially compressed unstiffened cylindrical composite shells , 2017 .

[16]  Yunlong Ma,et al.  Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression , 2016 .

[17]  Bo Wang,et al.  Worst Multiple Perturbation Load Approach of stiffened shells with and without cutouts for improved knockdown factors , 2014 .

[18]  Evgeny V. Morozov,et al.  Simulating progressive failure of composite laminates including in-ply and delamination damage effects , 2014 .

[19]  Bo Wang,et al.  Determination of realistic worst imperfection for cylindrical shells using surrogate model , 2013 .

[20]  G. Totaro,et al.  Recent advance on design and manufacturing of composite anisogrid structures for space launchers , 2012 .

[21]  Isaac Elishakoff,et al.  Probabilistic resolution of the twentieth century conundrum in elastic stability , 2012 .

[22]  Mark W. Hilburger,et al.  Developing the Next Generation Shell Buckling Design Factors and Technologies , 2012 .

[23]  Christophe Geuzaine,et al.  Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation , 2012 .

[24]  John W. Hutchinson,et al.  Knockdown factors for buckling of cylindrical and spherical shells subject to reduced biaxial membrane stress , 2010 .

[25]  Raimund Rolfes,et al.  Robust design of composite cylindrical shells under axial compression — Simulation and validation , 2008 .

[26]  B. Edlund Buckling of metallic shells: Buckling and postbuckling behaviour of isotropic shells, especially cylinders , 2007 .

[27]  Chiara Bisagni,et al.  Post-buckling and collapse experiments of stiffened composite cylindrical shells subjected to axial loading and torque , 2006 .

[28]  Theodore von Karman,et al.  The buckling of thin cylindrical shells under axial compression , 2003 .

[29]  Herbert Schmidt,et al.  Stability of steel shell structures General Report , 2000 .

[30]  C. R. Calladine,et al.  Paradoxical buckling behaviour of a thin cylindrical shell under axial compression , 2000 .

[31]  Hui-Shen Shen,et al.  Postbuckling analysis of imperfect stiffened laminated cylindrical shells under combined external pressure and thermal loading , 1998 .

[32]  James H. Starnes,et al.  Future directions and challenges in shell stability analysis , 1997 .

[33]  C. R. Calladine,et al.  Buckling experiments on damaged cylindrical shells , 1996 .

[34]  Jin-Guang Teng,et al.  Buckling of Thin Shells: Recent Advances and Trends , 1996 .

[35]  Lorna J. Gibson,et al.  Elastic buckling of cylindrical shells with elastic cores—II. Experiments , 1995 .

[36]  Giles W Hunt,et al.  Maxwell Critical Loads for Axially Loaded Cylindrical Shells , 1993 .

[37]  W. T. Koiter THE STABILITY OF ELASTIC EQUILIBRIUM , 1970 .

[38]  Christian Hühne,et al.  Robust knockdown factors for the design of cylindrical shells under axial compression: potentials, practical application and reliability analysis , 2018 .

[39]  Kaifan Du,et al.  Buckling of quasi-perfect cylindrical shell under axial compression: A combined experimental and numerical investigation , 2018 .

[40]  Chao Zhang,et al.  Comparison of periodic mesh and free mesh on the mechanical properties prediction of 3D braided composites , 2017 .

[41]  K. Schittkowski NLPQL: A fortran subroutine solving constrained nonlinear programming problems , 1986 .

[42]  L. Donnell,et al.  Effect of Imperfections on Buckling of Thin Cylinders and Columns under Axial Compression , 1950 .