A 45nm resilient and adaptive microprocessor core for dynamic variation tolerance

Microprocessors experience a wide range of dynamic variations, including voltage droops, temperature changes, and device aging, which vary across applications and systems. The necessity of ensuring correct operation even under infrequent worst-case conditions results in clock frequency (FCLK) or supply voltage (VCC) guardbands that degrade performance and increase energy consumption. In this paper, a research microprocessor core is described with resilient and adaptive circuits to mitigate dynamic variation guardbands for maximizing throughput or minimizing energy. The resiliency features consist of embedded error-detection sequentials (EDS) [1-4] and tunable replica circuits (TRC) [5] in conjunction with error-recovery circuits to detect and correct timing errors. A new instruction-replay error-recovery technique is introduced to correct errant instructions with low performance cost and implementation overhead. In addition, the microprocessor contains an adaptive clock controller based on error statistics to operate at maximum efficiency across a range of dynamic variations.

[1]  Edward J. McCluskey,et al.  On-line delay testing of digital circuits , 1994, Proceedings of IEEE VLSI Test Symposium.

[2]  Carlo H. Séquin,et al.  A VLSI RISC , 1982, Computer.

[3]  Michael Nicolaidis Time redundancy based soft-error tolerance to rescue nanometer technologies , 1999, Proceedings 17th IEEE VLSI Test Symposium (Cat. No.PR00146).

[4]  David M. Bull,et al.  RazorII: In Situ Error Detection and Correction for PVT and SER Tolerance , 2009, IEEE Journal of Solid-State Circuits.

[5]  K.A. Bowman,et al.  Energy-Efficient and Metastability-Immune Resilient Circuits for Dynamic Variation Tolerance , 2009, IEEE Journal of Solid-State Circuits.