Nonparametric IRT: Testing the bi-isotonicity of isotonic probabilistic models (ISOP)
暂无分享,去创建一个
[1] B. Junker. Some remarks on Scheiblechner's treatment of isop models , 1998 .
[2] Robert J. Mokken,et al. A Theory and Procedure of Scale Analysis. , 1973 .
[3] Charles Lewis,et al. A Nonparametric Approach to the Analysis of Dichotomous Item Responses , 1982 .
[4] Klaas Sijtsma,et al. Methodology Review: Nonparametric IRT Approaches to the Analysis of Dichotomous Item Scores , 1998 .
[5] Remarks on multivariate analogues of kendall's tau , 1981 .
[6] L. A. Goodman,et al. Measures of Association for Cross Classifications. II: Further Discussion and References , 1959 .
[7] Hans Irtel,et al. Psychodiagnostik auf Ordinalskalenniveau: Meßtheoretische Grundlagen, Modelltest und Parameterschätzung , 1982 .
[8] B. Junker,et al. A characterization of monotone unidimensional latent variable models , 1997 .
[9] B. Junker. Conditional association, essential independence and monotone unidimensional Item response models , 1993 .
[10] H. Scheiblechner. Additive conjoint isotonic probabilistic models (ADISOP) , 1999 .
[11] S. Stouffer,et al. Measurement and Prediction , 1954 .
[12] K Sijtsma,et al. A survey of theory and methods of invariant item ordering. , 1996, The British journal of mathematical and statistical psychology.
[13] D. Andrich. A rating formulation for ordered response categories , 1978 .
[14] Hartmann Scheiblechner,et al. Isotonic ordinal probabilistic models (ISOP) , 1995 .
[15] Edward E. Roskam. Graded responses and joining categories: a rejoinder to Andrich' “models for measurement, precision, and nondichotomization of graded responses” , 1995 .
[16] Majorization and Stochastic Orders , 2001 .
[17] Brian W. Junker,et al. Stochastic ordering using the latent trait and the sum score in polytomous IRT models , 1997 .
[18] C. Robertson,et al. Distributions of Goodman and Kruskal's Gamma and Spearman's Rho in 2 × 2 Tables for Small and Moderate Sample Sizes , 1981 .
[19] Ivo W. Molenaar,et al. Nonparametric Models for Polytomous Responses , 1997 .
[20] F. Schmalhofer,et al. [Psychological diagnosis from ordinal scale levels: measurement theory principles, model test and parameter estimation]. , 1981, Archiv fur Psychologie.
[21] William Stout,et al. A New Item Response Theory Modeling Approach with Applications to Unidimensionality Assessment and Ability Estimation , 1990 .
[22] L. A. Goodman,et al. Measures of Association for Cross Classifications, IV: Simplification of Asymptotic Variances , 1972 .
[23] Klaus W. Roggenkamp,et al. Orders and their Applications , 1985 .
[24] Corrections of theorems in Scheiblechner's treatment of ISOP models and comments on Junker's remarks , 1998 .
[25] L. A. Goodman,et al. Measures of association for cross classifications , 1979 .
[26] D. Andrich. Application of a Psychometric Rating Model to Ordered Categories Which Are Scored with Successive Integers , 1978 .
[27] L. A. Goodman,et al. Measures of Association for Cross Classifications III: Approximate Sampling Theory , 1963 .
[28] H. Irtel. An extension of the concept of specific objectivity , 1995 .
[29] Feng Yu,et al. Assessing Unidimensionality of Polytomous Data , 1998 .
[30] Moshe Shaked,et al. Stochastic orders and their applications , 1994 .
[31] Klaas Sijtsma,et al. Nonparametric polytomous IRT models for invariant item ordering, with results for parametric models , 1998 .
[32] Brian W. Junker,et al. Polytomous IRT models and monotone likelihood ratio of the total score , 1996 .
[33] F. T. Wright,et al. Order restricted statistical inference , 1988 .