Nonparametric IRT: Testing the bi-isotonicity of isotonic probabilistic models (ISOP)

Nonparametric tests for testing the validity of polytomous ISOP-models (unidimensional ordinal probabilistic polytomous IRT-models) are presented. Since the ISOP-model is a very general nonparametric unidimensional rating scale model the test statistics apply to a great multitude of latent trait models. A test for the comonotonicity of item sets of two or more items is suggested. Procedures for testing the comonotonicity of two item sets and for item selection are developed. The tests are based on Goodman-Kruskal's gamma index of ordinal association and are generalizations thereof. It is an essential advantage of polytomous ISOP-models within probabilistic IRT-models that the tests of validity of the model can be performed before and without the model being fitted to the data. The new test statistics have the further advantage that no prior order of items or subjects needs to be known.

[1]  B. Junker Some remarks on Scheiblechner's treatment of isop models , 1998 .

[2]  Robert J. Mokken,et al.  A Theory and Procedure of Scale Analysis. , 1973 .

[3]  Charles Lewis,et al.  A Nonparametric Approach to the Analysis of Dichotomous Item Responses , 1982 .

[4]  Klaas Sijtsma,et al.  Methodology Review: Nonparametric IRT Approaches to the Analysis of Dichotomous Item Scores , 1998 .

[5]  Remarks on multivariate analogues of kendall's tau , 1981 .

[6]  L. A. Goodman,et al.  Measures of Association for Cross Classifications. II: Further Discussion and References , 1959 .

[7]  Hans Irtel,et al.  Psychodiagnostik auf Ordinalskalenniveau: Meßtheoretische Grundlagen, Modelltest und Parameterschätzung , 1982 .

[8]  B. Junker,et al.  A characterization of monotone unidimensional latent variable models , 1997 .

[9]  B. Junker Conditional association, essential independence and monotone unidimensional Item response models , 1993 .

[10]  H. Scheiblechner Additive conjoint isotonic probabilistic models (ADISOP) , 1999 .

[11]  S. Stouffer,et al.  Measurement and Prediction , 1954 .

[12]  K Sijtsma,et al.  A survey of theory and methods of invariant item ordering. , 1996, The British journal of mathematical and statistical psychology.

[13]  D. Andrich A rating formulation for ordered response categories , 1978 .

[14]  Hartmann Scheiblechner,et al.  Isotonic ordinal probabilistic models (ISOP) , 1995 .

[15]  Edward E. Roskam Graded responses and joining categories: a rejoinder to Andrich' “models for measurement, precision, and nondichotomization of graded responses” , 1995 .

[16]  Majorization and Stochastic Orders , 2001 .

[17]  Brian W. Junker,et al.  Stochastic ordering using the latent trait and the sum score in polytomous IRT models , 1997 .

[18]  C. Robertson,et al.  Distributions of Goodman and Kruskal's Gamma and Spearman's Rho in 2 × 2 Tables for Small and Moderate Sample Sizes , 1981 .

[19]  Ivo W. Molenaar,et al.  Nonparametric Models for Polytomous Responses , 1997 .

[20]  F. Schmalhofer,et al.  [Psychological diagnosis from ordinal scale levels: measurement theory principles, model test and parameter estimation]. , 1981, Archiv fur Psychologie.

[21]  William Stout,et al.  A New Item Response Theory Modeling Approach with Applications to Unidimensionality Assessment and Ability Estimation , 1990 .

[22]  L. A. Goodman,et al.  Measures of Association for Cross Classifications, IV: Simplification of Asymptotic Variances , 1972 .

[23]  Klaus W. Roggenkamp,et al.  Orders and their Applications , 1985 .

[24]  Corrections of theorems in Scheiblechner's treatment of ISOP models and comments on Junker's remarks , 1998 .

[25]  L. A. Goodman,et al.  Measures of association for cross classifications , 1979 .

[26]  D. Andrich Application of a Psychometric Rating Model to Ordered Categories Which Are Scored with Successive Integers , 1978 .

[27]  L. A. Goodman,et al.  Measures of Association for Cross Classifications III: Approximate Sampling Theory , 1963 .

[28]  H. Irtel An extension of the concept of specific objectivity , 1995 .

[29]  Feng Yu,et al.  Assessing Unidimensionality of Polytomous Data , 1998 .

[30]  Moshe Shaked,et al.  Stochastic orders and their applications , 1994 .

[31]  Klaas Sijtsma,et al.  Nonparametric polytomous IRT models for invariant item ordering, with results for parametric models , 1998 .

[32]  Brian W. Junker,et al.  Polytomous IRT models and monotone likelihood ratio of the total score , 1996 .

[33]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .