Hierarchy, Morphology, and Adaptive Radiation: a Test of Osborn’s Law in the Carnivora

Henry Fairfield Osborn’s law of adaptive radiation was intended to explain the early proliferation of morphological and functional variation in diversifying clades. Yet, despite much theoretical development and empirical testing, questions remain regarding the taxonomic levels at which adaptive radiation occurs, the traits involved, and its frequency across the tree of life. Here, we evaluate support for this “early burst” model of adaptive radiation in 14 ecomorphological traits plus body mass for the extant mammalian order Carnivora. Strong support for an early burst adaptive radiation is recovered for molar grinding area, a key proxy for diet. However, we find no evidence for early burst–like dynamics in body mass or multivariate trait data, suggesting a decoupling of evolutionary modes among traits driven by dietary specialization. Furthermore, the signal of an early burst is only recovered for Carnivora, and not in family–level clades. The lack of support for the early burst model of morphological adaptive radiation in previous phylogenetic studies may be a consequence of focusing on the wrong traits at the wrong taxonomic levels. Osborn’s law predicted that adaptive radiation should be hierarchically structured, and the search for its signature and understanding of its prevalence will require a renewed focus on functional traits and their evolution over higher-level clades.

[1]  J. Losos,et al.  Tempo and Mode of Evolutionary Radiation in Iguanian Lizards , 2003, Science.

[2]  M. Wills,et al.  Morphological disparity in the cambrian. , 1992, Science.

[3]  R. Lande NATURAL SELECTION AND RANDOM GENETIC DRIFT IN PHENOTYPIC EVOLUTION , 1976, Evolution; international journal of organic evolution.

[4]  Matt Davis,et al.  The temporal scale of diet and dietary proxies , 2016, Ecology and evolution.

[5]  P. Upchurch,et al.  Rates of Dinosaur Body Mass Evolution Indicate 170 Million Years of Sustained Ecological Innovation on the Avian Stem Lineage , 2014, PLoS biology.

[6]  Susanne A. Fritz,et al.  Ecological and evolutionary determinants for the adaptive radiation of the Madagascan vangas , 2012, Proceedings of the National Academy of Sciences.

[7]  D. Jablonski Approaches to Macroevolution: 2. Sorting of Variation, Some Overarching Issues, and General Conclusions , 2017, Evolutionary Biology.

[8]  Michael Foote,et al.  Morphological diversification of Paleozoic crinoids , 1995, Paleobiology.

[9]  P. Joyce,et al.  A NOVEL COMPARATIVE METHOD FOR IDENTIFYING SHIFTS IN THE RATE OF CHARACTER EVOLUTION ON TREES , 2011, Evolution; international journal of organic evolution.

[10]  N. Cooper,et al.  Body Size Evolution in Mammals: Complexity in Tempo and Mode , 2010, The American Naturalist.

[11]  G. Slater Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution , 2015, Proceedings of the National Academy of Sciences.

[12]  P. Gaubert,et al.  Phylogenetic systematics and tempo of evolution of the Viverrinae (Mammalia, Carnivora, Viverridae) within feliformians: implications for faunal exchanges between Asia and Africa. , 2006, Molecular phylogenetics and evolution.

[13]  Sergey Gavrilets,et al.  Dynamic patterns of adaptive radiation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Ramírez,et al.  Discrete and morphometric traits reveal contrasting patterns and processes in the macroevolutionary history of a clade of scorpions , 2017, Journal of evolutionary biology.

[15]  E. Rayfield,et al.  The shapes of bird beaks are highly controlled by nondietary factors , 2016, Proceedings of the National Academy of Sciences.

[16]  W. Calder Size, Function, and Life History , 1988 .

[17]  S. Powell,et al.  Tightly congruent bursts of lineage and phenotypic diversification identified in a continental ant radiation , 2016, Evolution; international journal of organic evolution.

[18]  D. Rabosky Automatic Detection of Key Innovations, Rate Shifts, and Diversity-Dependence on Phylogenetic Trees , 2014, PloS one.

[19]  B. Valkenburgh Trophic diversity in past and present guilds of large predatory mammals , 1988 .

[20]  M. Friedman,et al.  Using Cladistic Characters to Predict Functional Variety: Experiments using Early Gnathostomes , 2012 .

[21]  Robert P. Freckleton,et al.  Fast likelihood calculations for comparative analyses , 2012 .

[22]  W. Matthew The Carnivora and Insectivora of the Bridger Basin, middle Eocene. Memoirs of the AMNH ; v. 9, pt. 6 , 1909 .

[23]  L. Revell,et al.  Phylogenetic signal, evolutionary process, and rate. , 2008, Systematic biology.

[24]  D. Schluter Ecological Causes of Adaptive Radiation , 1996, The American Naturalist.

[25]  Michael Foote,et al.  Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids , 1999, Paleobiology.

[26]  Tanja Stadler,et al.  Bayesian Inference of Sampled Ancestor Trees for Epidemiology and Fossil Calibration , 2014, PLoS Comput. Biol..

[27]  D. Rabosky Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. , 2009, Ecology letters.

[28]  George Gaylord Simpson,et al.  Major Features Of Evolution , 1954 .

[29]  M. Wills,et al.  Clades reach highest morphological disparity early in their evolution , 2013, Proceedings of the National Academy of Sciences.

[30]  B. O’Meara,et al.  MODELING STABILIZING SELECTION: EXPANDING THE ORNSTEIN–UHLENBECK MODEL OF ADAPTIVE EVOLUTION , 2012, Evolution; international journal of organic evolution.

[31]  R. Wayne,et al.  Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix. , 2006, Molecular phylogenetics and evolution.

[32]  B. Valkenburgh Déjà vu: the evolution of feeding morphologies in the Carnivora , 2007 .

[33]  Karl Rohe,et al.  Fast and accurate detection of evolutionary shifts in Ornstein–Uhlenbeck models , 2016 .

[34]  G. Turner The Ecology of Adaptive Radiation , 2001, Heredity.

[35]  S. Steppan,et al.  Evolution of hypercarnivory: the effect of specialization on morphological and taxonomic diversity , 2004, Paleobiology.

[36]  J. Huelsenbeck,et al.  The fossilized birth–death process for coherent calibration of divergence-time estimates , 2013, Proceedings of the National Academy of Sciences.

[37]  M. Foote,et al.  Paleozoic record of morphologica diversity in blastozoan echinoderms. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Marcus Rowcliffe,et al.  The Costs of Carnivory , 2007, PLoS biology.

[39]  R. Bianchi,et al.  Diet of margay, Leopardus wiedii, and jaguarundi, Puma yagouaroundi, (Carnivora: Felidae) in Atlantic Rainforest, Brazil , 2011 .

[40]  R. Butler,et al.  Do different disparity proxies converge on a common signal? Insights from the cranial morphometrics and evolutionary history of Pterosauria (Diapsida: Archosauria) , 2012, Journal of evolutionary biology.

[41]  M. Foote,et al.  Discordance and concordance between morphological and taxonomic diversity , 1993, Paleobiology.

[42]  Chris J Law,et al.  Lineage Diversity and Size Disparity in Musteloidea: Testing Patterns of Adaptive Radiation Using Molecular and Fossil‐Based Methods , 2018, Systematic biology.

[43]  Tanja Stadler,et al.  Bayesian Total-Evidence Dating Reveals the Recent Crown Radiation of Penguins , 2015, Systematic biology.

[44]  D. Futuyma,et al.  Evolution Since Darwin: The First 150 Years , 2010 .

[45]  Klaus-Peter Koepfli,et al.  Phylogeny of the Procyonidae (Mammalia: Carnivora): molecules, morphology and the Great American Interchange. , 2007, Molecular phylogenetics and evolution.

[46]  C. Marshall Nomothetism and Understanding the Cambrian “Explosion” , 2003 .

[47]  G. Slater Correction to ‘Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous–Palaeogene boundary’, and a note on fitting macroevolutionary models to comparative paleontological data sets , 2014 .

[48]  A. Hartstone‐Rose,et al.  The Three-Dimensional Morphological Effects of Captivity , 2014, PloS one.

[49]  F. De Filippis,et al.  A Selected Core Microbiome Drives the Early Stages of Three Popular Italian Cheese Manufactures , 2014, PloS one.

[50]  G. Simpson,et al.  Genetics, paleontology, and evolution. , 1949 .

[51]  D. Jablonski SCALE AND HIERARCHY IN MACROEVOLUTION , 2007 .

[52]  H. López-Fernández,et al.  Selection towards different adaptive optima drove the early diversification of locomotor phenotypes in the radiation of Neotropical geophagine cichlids , 2015, BMC Evolutionary Biology.

[53]  A. Knoll,et al.  Character diversification and patterns of evolution in early vascular plants , 1984, Paleobiology.

[54]  G. Slater Not-so-early bursts and the dynamic nature of morphological diversification , 2015, Proceedings of the National Academy of Sciences.

[55]  L. Harmon,et al.  INTEGRATING FOSSILS WITH MOLECULAR PHYLOGENIES IMPROVES INFERENCE OF TRAIT EVOLUTION , 2012, Evolution; international journal of organic evolution.

[56]  S. J. Arnold,et al.  The adaptive landscape as a conceptual bridge between micro- and macroevolution , 2004, Genetica.

[57]  K. Schmidt-Nielsen,et al.  Scaling, why is animal size so important? , 1984 .

[58]  M. Wilkinson,et al.  Do cladistic and morphometric data capture common patterns of morphological disparity? , 2015 .

[59]  J. Losos,et al.  Adaptive Radiation: Contrasting Theory with Data , 2009, Science.

[60]  J. L. Gittleman,et al.  EARLY BURSTS OF BODY SIZE AND SHAPE EVOLUTION ARE RARE IN COMPARATIVE DATA , 2010, Evolution; international journal of organic evolution.

[61]  T. Dayan,et al.  Feline Canines: Community-Wide Character Displacement Among the Small Cats of Israel , 1990, The American Naturalist.

[62]  R. Lupia,et al.  Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record , 1999, Paleobiology.

[63]  S N Patek,et al.  Mechanical sensitivity and the dynamics of evolutionary rate shifts in biomechanical systems , 2017, Proceedings of the Royal Society B: Biological Sciences.

[64]  Agostinho Antunes,et al.  The Late Miocene Radiation of Modern Felidae: A Genetic Assessment , 2006, Science.

[65]  Svante Pääbo,et al.  Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary , 2008, BMC Evolutionary Biology.

[66]  F J Ayala,et al.  Tempo and mode in evolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[67]  A. King,et al.  Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution , 2004, The American Naturalist.

[68]  Jordan S. Miller,et al.  The Billion Cell Construct: Will Three-Dimensional Printing Get Us There? , 2014, PLoS biology.

[69]  J. Alroy,et al.  Dietary characterization of terrestrial mammals , 2014, Proceedings of the Royal Society B: Biological Sciences.

[70]  B. Van Valkenburgh Deja vu: the evolution of feeding morphologies in the Carnivora. , 2007, Integrative and comparative biology.

[71]  J. J. Flynn,et al.  Molecular phylogeny of the carnivora (mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. , 2005, Systematic biology.

[72]  A. R. Biknevicius,et al.  An ecomorphological analysis of extant small carnivorans , 2007 .

[73]  B. Valkenburgh Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators , 1991 .

[74]  C. Boyce,et al.  Patterns of segregation and convergence in the evolution of fern and seed plant leaf morphologies , 2005, Paleobiology.

[75]  Daniel S. Caetano,et al.  ratematrix: An R package for studying evolutionary integration among several traits on phylogenetic trees , 2017 .

[76]  Daniel S. Caetano,et al.  Estimating correlated rates of trait evolution with uncertainty , 2017, bioRxiv.

[77]  Sergey Gavrilets,et al.  Dynamics of clade diversification on the morphological hypercube , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[78]  C. Marshall The evolution of morphogenetic fitness landscapes: conceptualising the interplay between the developmental and ecological drivers of morphological innovation , 2014, Australian Journal of Zoology.

[79]  J. W. Valentine,et al.  Equilibrium Models of Evolutionary Species Diversity and the Number of Empty Niches , 1984, The American Naturalist.

[80]  G. Hunt Measuring rates of phenotypic evolution and the inseparability of tempo and mode , 2012, Paleobiology.

[81]  Kate E. Jones,et al.  PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals , 2009 .

[82]  SIZE AS A LINE OF LEAST EVOLUTIONARY RESISTANCE: DIET AND ADAPTIVE MORPHOLOGICAL RADIATION IN NEW WORLD MONKEYS , 2005, Evolution; international journal of organic evolution.

[83]  M. Foote,et al.  Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space , 1994, Paleobiology.

[84]  Stéphane Robin,et al.  Inference of Adaptive Shifts for Multivariate Correlated Traits , 2017, bioRxiv.

[85]  Luke J. Harmon,et al.  Geiger V2.0: an Expanded Suite of Methods for Fitting Macroevolutionary Models to Phylogenetic Trees , 2014, Bioinform..

[86]  J. Bonner Size and Cycle: An Essay on the Structure of Biology , 2015 .

[87]  T. Price,et al.  Evolution of ecological differences in the Old World leaf warblers , 1992, Nature.

[88]  Matthew W Pennell,et al.  Robust regression and posterior predictive simulation increase power to detect early bursts of trait evolution. , 2014, Systematic biology.

[89]  W. Godsoe,et al.  Ecological opportunity and the origin of adaptive radiations , 2010, Journal of evolutionary biology.

[90]  M. Kirkpatrick Patterns of quantitative genetic variation in multiple dimensions , 2009, Genetica.

[91]  F. Santini,et al.  Diversity versus disparity and the radiation of modern cetaceans , 2010, Proceedings of the Royal Society B: Biological Sciences.

[92]  Dolph Schluter,et al.  ADAPTIVE RADIATION ALONG GENETIC LINES OF LEAST RESISTANCE , 1996, Evolution; international journal of organic evolution.

[93]  T. Dayan,et al.  VARIABILITY AND SEXUAL SIZE DIMORPHISM IN CARNIVORES: TESTING THE NICHE VARIATION HYPOTHESIS , 2005 .

[94]  R. Kiltie Interspecific size regularities in tropical felid assemblages , 1988, Oecologia.

[95]  R. Peters The Ecological Implications of Body Size , 1983 .

[96]  Gina D. Wesley-Hunt The morphological diversification of carnivores in North America , 2005, Paleobiology.

[97]  D. Schluter,et al.  The Ecology of Adaptive Radiation , 2000 .

[98]  Luke J. Harmon,et al.  A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data , 2014 .

[99]  D. Pfennig,et al.  Evolution's Wedge: Competition and the Origins of Diversity , 2012 .

[100]  M. Foote THE EVOLUTION OF MORPHOLOGICAL DIVERSITY , 1997 .

[101]  S. Buskirk,et al.  Diet, Morphology, and Interspecific Killing in Carnivora , 2006, The American Naturalist.

[102]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[103]  M. Rosenzweig COMMUNITY STRUCTURE IN SYMPATRIC CARNIVORA , 1966 .

[104]  T. Garland,et al.  TESTING FOR PHYLOGENETIC SIGNAL IN COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE , 2003, Evolution; international journal of organic evolution.

[105]  R. Wayne,et al.  A molecular phylogeny of the Canidae based on six nuclear loci. , 2005, Molecular phylogenetics and evolution.

[106]  Andrew Meade,et al.  Multiple routes to mammalian diversity , 2011, Nature.

[107]  P. Sadler Sediment Accumulation Rates and the Completeness of Stratigraphic Sections , 1981, The Journal of Geology.

[108]  M. Coates,et al.  Evolutionary patterns in early tetrapods. I. Rapid initial diversification followed by decrease in rates of character change , 2006, Proceedings of the Royal Society B: Biological Sciences.

[109]  T. Dayan,et al.  Character Displacement, Sexual Dimprphism, and Morphological Variation among British and Irish Mustelids , 1994 .

[110]  G. E. Hutchinson,et al.  Homage to Santa Rosalia or Why Are There So Many Kinds of Animals? , 1959, The American Naturalist.

[111]  B. Valkenburgh Feeding Behavior in Free-Ranging, Large African Carnivores , 1996 .

[112]  J. W. Valentine Determinants of diversity in higher taxonomic categories , 1980, Paleobiology.

[113]  D. Collar,et al.  DISCORDANCE BETWEEN MORPHOLOGICAL AND MECHANICAL DIVERSITY IN THE FEEDING MECHANISM OF CENTRARCHID FISHES , 2006, Evolution; international journal of organic evolution.

[114]  B. Valkenburgh,et al.  Ecomorphological indicators of feeding behaviour in the bears (Carnivora: Ursidae) , 2004 .

[115]  R. Wayne,et al.  Multigene phylogeny of the Mustelidae: Resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation , 2008, BMC Biology.

[116]  T. Barraclough,et al.  The evolutionary reality of higher taxa in mammals , 2014, Proceedings of the Royal Society B: Biological Sciences.

[117]  S. Gould Wonderful Life: The Burgess Shale and the Nature of History , 1989 .

[118]  Otso Ovaskainen,et al.  A Bayesian framework for comparative quantitative genetics , 2008, Proceedings of the Royal Society B: Biological Sciences.

[119]  K. Niklas Effects of hypothetical developmental barriers and abrupt environmental changes on adaptive walks in a computer-generated domain for early vascular land plants , 1997, Paleobiology.

[120]  L. Werdelin Community‐wide character displacement in Miocene hyaenas , 1996 .

[121]  Jonathan B. Losos,et al.  Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles , 2009 .

[122]  D. Erwin Macroevolution is more than repeated rounds of microevolution , 2000, Evolution & development.

[123]  Robert P Freckleton,et al.  Detecting Non-Brownian Trait Evolution in Adaptive Radiations , 2006, PLoS biology.

[124]  J. J. Flynn,et al.  Phylogeny of the carnivora: Basal relationships among the carnivoramorphans, and assessment of the position of ‘miacoidea’ relative to carnivora , 2005 .

[125]  S. O’Brien,et al.  Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. , 2010, Molecular phylogenetics and evolution.

[126]  T. F. Hansen STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS OF ADAPTATION , 1997, Evolution; international journal of organic evolution.

[127]  S. Gould The promise of paleobiology as a nomothetic, evolutionary discipline , 1980, Paleobiology.

[128]  S. Lidgard,et al.  Evolutionary mode routinely varies among morphological traits within fossil species lineages , 2012, Proceedings of the National Academy of Sciences.

[129]  J. Meachen-Samuels,et al.  Craniodental indicators of prey size preference in the Felidae , 2009 .

[130]  Michael Doebeli,et al.  Diversity and Coevolutionary Dynamics in High-Dimensional Phenotype Spaces* , 2017, The American Naturalist.

[131]  C. D. Hulsey,et al.  Many-to-One Mapping of Form to Function: A General Principle in Organismal Design?1 , 2005, Integrative and comparative biology.

[132]  A. Kitchener,et al.  The effects of captivity on the morphology of captive, domesticated and feral mammals , 2005 .

[133]  R. Kiltie Size ratios among sympatric neotropical cats , 1984, Oecologia.

[134]  G. Merceron,et al.  mvmorph: an r package for fitting multivariate evolutionary models to morphometric data , 2015 .

[135]  Christopher R. Cooney,et al.  Mega-evolutionary dynamics of the adaptive radiation of birds , 2017, Nature.

[136]  A. Haber Phenotypic Covariation And Morphological Diversification In The Ruminant Skull , 2015, bioRxiv.

[137]  Susan C. Roberts,et al.  Energetic constraints on the diet of terrestrial carnivores , 1999, Nature.

[138]  G. Eble,et al.  Assessing the robustness of disparity estimates: the impact of morphometric scheme, temporal scale, and taxonomic level in spatangoid echinoids , 2004, Paleobiology.

[139]  J. Cracraft,et al.  LINEAGE DIVERSIFICATION AND MORPHOLOGICAL EVOLUTION IN A LARGE‐SCALE CONTINENTAL RADIATION: THE NEOTROPICAL OVENBIRDS AND WOODCREEPERS (AVES: FURNARIIDAE) , 2011, Evolution; international journal of organic evolution.

[140]  P. Gaubert,et al.  Exhaustive sample set among Viverridae reveals the sister-group of felids: the linsangs as a case of extreme morphological convergence within Feliformia , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[141]  J. Damuth,et al.  Cope's Rule, Hypercarnivory, and Extinction in North American Canids , 2004, Science.

[142]  T. Fulton,et al.  Novel phylogeny of the raccoon family (Procyonidae: Carnivora) based on nuclear and mitochondrial DNA evidence. , 2007, Molecular phylogenetics and evolution.

[143]  Henry Fairfield Osborn,et al.  The Law of Adaptive Radiation , 1902, The American Naturalist.

[144]  A. Green,et al.  DNA Damage–Induced Bcl-xL Deamidation Is Mediated by NHE-1 Antiport Regulated Intracellular pH , 2006, PLoS biology.

[145]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[146]  D. Mahler,et al.  SURFACE: detecting convergent evolution from comparative data by fitting Ornstein‐Uhlenbeck models with stepwise Akaike Information Criterion , 2013 .

[147]  J. Losos,et al.  Exceptional Convergence on the Macroevolutionary Landscape in Island Lizard Radiations , 2013, Science.

[148]  J. Cheverud,et al.  SIZE AS A LINE OF LEAST RESISTANCE II: DIRECT SELECTION ON SIZE OR CORRELATED RESPONSE DUE TO CONSTRAINTS? , 2010, Evolution; international journal of organic evolution.

[149]  D. Jablonski Extinction and the spatial dynamics of biodiversity , 2008, Proceedings of the National Academy of Sciences.

[150]  T. Fulton,et al.  Molecular phylogeny of the Arctoidea (Carnivora): effect of missing data on supertree and supermatrix analyses of multiple gene data sets. , 2006, Molecular phylogenetics and evolution.

[151]  J. L. Gittleman,et al.  Species co-existence and character divergence across carnivores. , 2007, Ecology letters.

[152]  A. Couloux,et al.  Molecular phylogeny of the Herpestidae (Mammalia, Carnivora) with a special emphasis on the Asian Herpestes. , 2009, Molecular Phylogenetics and Evolution.

[153]  Pasquale Raia,et al.  Cats and Dogs Down the Tree: The Tempo and Mode of Evolution in the Lower Carnassial of Fossil and Living Carnivora , 2010, Evolutionary Biology.

[154]  J. Alroy,et al.  Inferring diet from dental morphology in terrestrial mammals , 2017 .

[155]  K. Niklas Evolutionary walks through a land plant morphospace , 1999 .

[156]  L. V. Van Valen Multivariate structural statistics in natural history. , 1974, Journal of theoretical biology.

[157]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.