Surface roughness effects on attachment ability of the spider Philodromus dispar (Araneae, Philodromidae)

SUMMARY The morphology of the tarsal attachment system of the running spider Philodromus dispar Walckenaer 1826 (Araneae, Philodomidae) was studied using scanning electron microscopy and its performance was experimentally tested in traction force measurements. Each pretarsus bears a hierarchically built hairy adhesive pad that consists of a dense array of flattened setae covered with numerous microtrichia on the substrate-facing side. Microtrichia carry spatulate end tips that allow close contact with the substrate. Forces were estimated on tethered living specimens on rough epoxy resin surfaces (asperity size 0.3, 1, 3, 9 and 12 μm) and on a smooth surface as a control. A strong reduction in adhesion was observed for substrates with an asperity size of 0.3 and 1 μm. Comparison of the present data with previous results of different organisms demonstrates that the difference in force reduction on rough substrata depends on the dimensions of terminal contact elements (spatulae).

[1]  A. Jagota,et al.  Design of biomimetic fibrillar interfaces: 1. Making contact , 2004, Journal of The Royal Society Interface.

[2]  Naoe Hosoda,et al.  Influence of surface roughness on gecko adhesion. , 2007, Acta biomaterialia.

[3]  U. Hiller Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien , 1968, Zeitschrift für Morphologie der Tiere.

[4]  S. Gorb,et al.  How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants. , 2004, Arthropod structure & development.

[5]  Ralph Spolenak,et al.  Adhesion design maps for bio-inspired attachment systems. , 2005, Acta biomaterialia.

[6]  Matt Wilkinson,et al.  Changes in materials properties explain the effects of humidity on gecko adhesion , 2010, Journal of Experimental Biology.

[7]  S. Gorb,et al.  WHEN LESS IS MORE: EXPERIMENTAL EVIDENCE FOR TENACITY ENHANCEMENT BY DIVISION OF CONTACT AREA , 2004 .

[8]  S. Gorb,et al.  Evolution of locomotory attachment pads in the Dermaptera (Insecta). , 2004, Arthropod structure & development.

[9]  S. Gorb,et al.  Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). , 2002, The Journal of experimental biology.

[10]  Jonas O. Wolff,et al.  The influence of humidity on the attachment ability of the spider Philodromus dispar (Araneae, Philodromidae) , 2012, Proceedings of the Royal Society B: Biological Sciences.

[11]  Do plant waxes make insect attachment structures dirty? Experimental evidence for the contamination hypothesis , 2006 .

[12]  S. Gorb,et al.  Attachment force of the beetle Cryptolaemus montrouzieri (Coleoptera, Coccinellidae) on leaflet surfaces of mutants of the pea Pisum sativum (Fabaceae) with regular and reduced wax coverage , 2008, Arthropod-Plant Interactions.

[13]  Bharat Bhushan,et al.  Adhesion analysis of two-level hierarchical morphology in natural attachment systems for 'smart adhesion' , 2006 .

[14]  Ralph Spolenak,et al.  Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Walter Federle,et al.  Why are so many adhesive pads hairy? , 2006, Journal of Experimental Biology.

[16]  F. Barth [Fine structure of the spider integument. I. Walking leg cuticle of adult animals long after moulting (Cupiennius salei Keys)]. , 1969, Zeitschrift fur Zellforschung und mikroskopische Anatomie.

[17]  S. Gorb,et al.  Evolution of locomotory attachment pads of hexapods , 2001, Naturwissenschaften.

[18]  Bharat Bhushan,et al.  Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface , 2007 .

[19]  F. Barth Microfiber reinforcement of an arthropod cuticle , 1973, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[20]  Friction force reduction triggers feet grooming behaviour in beetles , 2011, Proceedings of the Royal Society B: Biological Sciences.

[21]  J. Vincent,et al.  Design and mechanical properties of insect cuticle. , 2004, Arthropod structure & development.

[22]  J. Halbritter,et al.  How dry are dried samples? Water adsorption measured by STM , 1999, Microscopy research and technique.

[23]  Stanislav N. Gorb,et al.  The effect of surface roughness on the adhesion of elastic plates with application to biological systems , 2003 .

[24]  F. Barth Die Feinstruktur des Spinneninteguments , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[25]  Seong H. Kim,et al.  Effects of adsorbed water layer structure on adhesion force of silicon oxide nanoasperity contact in humid ambient. , 2006, The Journal of chemical physics.

[26]  Tobias Seidl,et al.  Getting a grip on spider attachment: an AFM approach to microstructure adhesion in arthropods , 2004 .

[27]  S. Gorb,et al.  Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment , 2005, Journal of Experimental Biology.

[28]  Elisabeth Bauchhenß,et al.  Die Pulvillen vonCalliphora erythrocephala (Diptera, Brachycera) als Adhäsionsorgane , 1979, Zoomorphologie.

[29]  H. Homann,et al.  Haften Spinnen an einer Wasserhaut? , 2004, Naturwissenschaften.

[30]  Walter Federle,et al.  The effect of surface roughness on claw and adhesive hair performance in the dock beetle Gastrophysa viridula , 2011 .

[31]  C. Neinhuis,et al.  Structure and biomechanics of trapping flower trichomes and their role in the pollination biology of Aristolochia plants (Aristolochiaceae). , 2009, The New phytologist.

[32]  Stanislav N. Gorb,et al.  Smooth attachment devices in insects: Functional morphology and biomechanics , 2007 .

[33]  M. Moon,et al.  Fine structural analysis on the dry adhesion system of the jumping spider plexippus setipes (Araneae: Salticidae) , 2009 .

[34]  P. Guttmann,et al.  Terminal contact elements of insect attachment devices studied by transmission X-ray microscopy , 2008, Journal of Experimental Biology.

[35]  S. Gorb,et al.  Mechanical properties of a single gecko seta , 2008 .

[36]  S. Gorb,et al.  Temporary stay at various environmental humidities affects attachment ability of Colorado potato beetles Leptinotarsa decemlineata (Coleoptera, Chrysomelidae) , 2010 .

[37]  Anand Jagota,et al.  Mechanics of Adhesion Through a Fibrillar Microstructure1 , 2002, Integrative and comparative biology.

[38]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Scherge,et al.  Friction of thin water films: a nanotribological study , 2002 .

[40]  R. Foelix,et al.  The biology of spiders. , 1987 .

[41]  Alessandro Gasparetto,et al.  A Mechanical Model for the Adhesion of Spiders to Nominally Flat Surfaces , 2009 .

[42]  Xudong Xiao,et al.  Investigation of Humidity-Dependent Capillary Force , 2000 .

[43]  Jan-Henning Dirks,et al.  Arachnids Secrete a Fluid over Their Adhesive Pads , 2011, PloS one.

[44]  Stanislav N. Gorb,et al.  Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces , 2002 .

[45]  Stanislav N. Gorb,et al.  Surface profile and friction force generated by insects , 2004 .

[46]  Stanislav N. Gorb,et al.  Friction and adhesion in the tarsal and metatarsal scopulae of spiders , 2006, Journal of Comparative Physiology A.

[47]  Matthias Scherge,et al.  Structural Design and Biomechanics of Friction-Based Releasable Attachment Devices in Insects1 , 2002, Integrative and comparative biology.

[48]  Stanislav N. Gorb,et al.  The design of the fly adhesive pad: distal tenent setae are adapted to the delivery of an adhesive secretion , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[49]  N. Rizzo,et al.  Characterization of the structure and composition of gecko adhesive setae , 2006, Journal of The Royal Society Interface.

[50]  R. Ruibal,et al.  The structure of the digital setae of lizards , 1965, Journal of morphology.

[51]  Brij M Moudgil,et al.  Capillary forces between surfaces with nanoscale roughness. , 2002, Advances in colloid and interface science.

[52]  M. Ratner,et al.  Capillary force in atomic force microscopy. , 2004, The Journal of chemical physics.

[53]  Jun Young Chung,et al.  Roles of discontinuities in bio-inspired adhesive pads , 2005, Journal of The Royal Society Interface.

[54]  R J Full,et al.  Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives , 2007, Proceedings of the National Academy of Sciences.

[55]  A B Kesel,et al.  Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata , 2003, Journal of Experimental Biology.

[56]  S N Gorb,et al.  Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. , 2008, Journal of insect physiology.

[57]  B. N. J. Perssona On the mechanism of adhesion in biological systems , 2003 .

[58]  B. Opell,et al.  van der Waals and hygroscopic forces of adhesion generated by spider capture threads , 2003, Journal of Experimental Biology.

[59]  S. Gorb,et al.  From micro to nano contacts in biological attachment devices , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[60]  W. Federle,et al.  The insect-trapping rim of Nepenthes pitchers , 2009, Plant signaling & behavior.

[61]  S. Gorb,et al.  Slippery pores: anti-adhesive effect of nanoporous substrates on the beetle attachment system , 2010, Journal of The Royal Society Interface.

[62]  C. Weirauch Hairy attachment structures in Reduviidae (Cimicomorpha, Heteroptera), with observations on the fossula spongiosa in some other Cimicomorpha , 2007 .

[63]  Peter H. Niewiarowski,et al.  Sticky Gecko Feet: The Role of Temperature and Humidity , 2008, PloS one.

[64]  Nicola Pugno,et al.  Spatulate structures in biological fibrillar adhesion , 2010 .

[65]  D. Hill,et al.  The pretarsus of salticid spiders , 1977 .