Backtracking and proofreading in DNA transcription.

Biological cell function crucially relies on the accuracy of RNA sequences, transcribed from the DNA genetic code. To ensure sufficiently high fidelity in the face of high spontaneous error rates during transcription, error correction mechanisms must play an important role. A particular mechanism of transcriptional error correction involves backtracking of the RNA polymerase and RNA cleavage. Motivated by recent single molecule experiments characterizing the dynamics of backtracking, we present a microscopic model of this editing process. We show that such a mechanism can yield error frequencies that are in agreement with in vivo observations.