Public geoscience solutions for diversifying Canada's critical mineral production

Achieving net-zero carbon emissions goals will increasingly rely on critical mineral resources while simultaneously decreasing the extraction, processing and use of hydrocarbons as the primary provider of energy. Canada is well-positioned to contribute to this effort through a series of innovative policy and research initiatives, and it is Canada's goal to be a stable supplier of critical minerals into the future. To this end, Natural Resources Canada and the Geological Survey of Canada invest financial resources into critical mineral research initiatives. This research aims to generate precompetitive baseline geological, geochemical and geophysical data for large, underexplored regions within Canada, whereas targeted studies focus on mineral systems science and improved exploration models for the large variety of critical mineral resources distributed throughout Canada. These research approaches can be combined, digitally, to generate mineral potential models. These ongoing efforts by the Geological Survey of Canada enhance the viability of Canada being (or maintaining its status as) a hub for critical mineral resource development and processing well into the future.

[1]  E. Roots,et al.  Deep Geological Controls on Formation of the Highest‐Grade Uranium Deposits in the World: Magnetotelluric Imaging of Unconformity‐Related Systems From the Athabasca Basin, Canada , 2022, Geophysical Research Letters.

[2]  P. Acosta-Góngora,et al.  Geochemical characterization of the Central Mineral Belt U ± Cu ± Mo ± V mineralization, Labrador, Canada: Application of unsupervised machine-learning for evaluation of IOCG and affiliated mineral potential , 2022, Journal of Geochemical Exploration.

[3]  J. Percival,et al.  Detecting Buried Porphyry Cu Mineralization in a Glaciated Landscape: A Case Study from the Gibraltar Cu-Mo Deposit, British Columbia, Canada , 2022, Economic Geology.

[4]  S. Decrée,et al.  Carbonatites: Classification, Sources, Evolution, and Emplacement , 2022, Annual Review of Earth and Planetary Sciences.

[5]  N. Drage,et al.  Carbonate-hosted deposits (Mississippi Valley-type, magnesite, and REE-F-Ba) of the southeastern Canadian Cordillera: a review and isotopic data comparison , 2022 .

[6]  M. Gadd,et al.  Genesis of hyper-enriched black shale Ni-Mo-Zn-Pt-Pd-Re mineralization in the northern Canadian Cordillera , 2022 .

[7]  M. Gadd,et al.  Targeted Geoscience Initiative 5: volcanic- and sediment-hosted massive-sulfide deposit genesis and exploration methods , 2022 .

[8]  J. Spence,et al.  Rare-earth element content of carbonate minerals in sediment-hosted Pb-Zn deposits, southern Canadian Rocky Mountains , 2022 .

[9]  M. Leybourne,et al.  Indicator minerals in fine-fraction till heavy-mineral concentrates determined by automated mineral analysis: examples from two Canadian polymetallic base-metal deposits , 2022 .

[10]  M. Gadd,et al.  Data–driven prospectivity modelling of sediment–hosted Zn–Pb mineral systems and their critical raw materials , 2021, Ore Geology Reviews.

[11]  M. Leybourne,et al.  Application of molybdenum and thallium isotopes as indicators of paleoredox conditions and genesis of hyper-enriched black shale deposits, Peel River, Yukon, Canada , 2021, Canadian Mineralogist.

[12]  M. Leybourne,et al.  Paleoredox conditions, hydrothermal history, and target vectoring in the Macmillan Pass base-metal district, Yukon, Canada: 2 – Pyrite paragenesis and mineral chemistry , 2021, Canadian Mineralogist.

[13]  S. Broom-Fendley,et al.  Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements , 2021, Journal of Earth Science.

[14]  George J. Simandl,et al.  Economic Geology Models 5. Specialty, Critical, Battery, Magnet and Photovoltaic Materials: Market Facts, Projections and Implications for Exploration and Development , 2021, Geoscience Canada.

[15]  V. Tschirhart,et al.  Fluid evolution along the Patterson Lake corridor in the southwestern Athabasca Basin: constraints from fluid inclusions and implications for unconformity-related uranium mineralization , 2021, Geochemistry: Exploration, Environment, Analysis.

[16]  Y. Ghorbani,et al.  Valorisation of mine waste - Part I: Characteristics of, and sampling methodology for, consolidated mineralised tailings by using Witwatersrand gold mines (South Africa) as an example. , 2021, Journal of environmental management.

[17]  A. Ielpi,et al.  A reappraisal of the Nonacho Basin (Northwest Territories, Canada): Record of post-orogenic collapse and marine flooding in the Palaeoproterozoic of the Rae Craton , 2021 .

[18]  M. Leybourne,et al.  Development of a laser ablation ICP-MS method for the analysis of fluid inclusions associated with volcanogenic massive sulfide deposits , 2021, Geochemistry: Exploration, Environment, Analysis.

[19]  K. Czarnota,et al.  Geological Surveys Unite to Improve Critical Mineral Security , 2021 .

[20]  C. Hart,et al.  RECOGNIZING PORPHYRY COPPER POTENTIAL FROM TILL ZIRCON COMPOSITION: A CASE STUDY FROM THE HIGHLAND VALLEY PORPHYRY DISTRICT, SOUTH-CENTRAL BRITISH COLUMBIA , 2021 .

[21]  P. Acosta-Góngora,et al.  Metasomatic iron and alkali calcic (MIAC) system frameworks: a TGI-6 task force to help de-risk exploration for IOCG, IOA and affiliated primary critical metal deposits , 2021 .

[22]  E. Schetselaar,et al.  Targeted Geoscience Initiative 5: contributions to the understanding and exploration of porphyry deposits , 2021 .

[23]  N. Rogers Spatial and temporal distribution of the Late Triassic to Early Jurassic porphyry-style mineralized plutons of the Quesnel terrane, British Columbia: inferences on tectonic controls and porphyry prospectivity , 2021 .

[24]  E. Schetselaar,et al.  Reconnaissance investigation of magnetite trace-element compositions from the New Afton Cu-Au deposit, British Columbia , 2021 .

[25]  M. Thomas Spatial relationship between porphyritic Cu-Au mineral occurrences and magnetic signatures within the Iron Mask Batholith, south-central Cordillera, British Columbia , 2021 .

[26]  E. Schetselaar,et al.  Seismic imaging of porphyry deposits with distributed acoustic sensing of fibre-optic cables: a summary of results at the New Afton Cu-Au mine, British Columbia , 2021 .

[27]  A. Plouffe,et al.  Automated indicator-mineral analysis of the fine-sand heavy-mineral concentrate fraction of till: a promising exploration tool for porphyry copper mineralization , 2021 .

[28]  A. McDonald,et al.  Investigation of tourmaline characteristics in bedrock and surficial sediment samples from two Canadian porphyry copper systems , 2021 .

[29]  D. Kontak,et al.  Spatio-temporal distribution of Devonian post-accretionary granitoids in the Canadian Appalachians: implications for tectonic controls on intrusion-related mineralization , 2021 .

[30]  M. Leybourne,et al.  Heavy mineral and geochemical signatures of porphyry copper mineralization: examples from the Casino porphyry Cu-Au-Mo deposit, Yukon , 2021 .

[31]  P. Acosta-Góngora,et al.  Detrital epidote chemistry: detecting the alteration footprint of porphyry copper mineralization in the Quesnel terrane of the Canadian Cordillera, British Columbia , 2021 .

[32]  A. Sappin,et al.  Drill core pictures and description of samples collected from the REE Kwyjibo deposit (SOQUEM warehouse, Val d'Or, Quebec - October 2015) , 2021 .

[33]  Vladimir Lisitsin,et al.  Deposit classification scheme for the Critical Minerals Mapping Initiative Global Geochemical Database , 2021 .

[34]  A. Valero,et al.  Summary and critical review of the International Energy Agency’s special report: The role of critical minerals in clean energy transitions , 2021 .

[35]  P Mercier-Langevin,et al.  Targeted Geoscience Initiative 5: Contributions to the Understanding of Canadian Gold Systems , 2021, Economic Geology.

[36]  Robert L. Mansell,et al.  The Canadian Northern Corridor: Planning for National Prosperity , 2020 .

[37]  C. Card The Patterson Lake corridor of Saskatchewan, Canada: defining crystalline rocks in a deep-seated structure that hosts a giant, high-grade Proterozoic unconformity uranium system , 2020, Geochemistry: Exploration, Environment, Analysis.

[38]  G. Mudd,et al.  Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production , 2020, Communications Earth & Environment.

[39]  S. Gleeson,et al.  A NEW SUBSEAFLOOR REPLACEMENT MODEL FOR THE MACMILLAN PASS CLASTIC-DOMINANT Zn-Pb ± Ba DEPOSITS (YUKON, CANADA) , 2020 .

[40]  Cooke,et al.  Using Mineral Chemistry to Aid Exploration: A Case Study from the Resolution Porphyry Cu-Mo Deposit, Arizona , 2020 .

[41]  Cooke,et al.  Exploration Targeting in Porphyry Cu Systems Using Propylitic Mineral Chemistry: A Case Study of the El Teniente Deposit, Chile , 2020, Economic Geology.

[42]  V. Tschirhart,et al.  Interpretation of buried basement in the southwestern Athabasca Basin, Canada, from integrated geophysical and geological datasets , 2020, Geochemistry: Exploration, Environment, Analysis.

[43]  M. Gadd,et al.  A Middle Devonian basin-scale precious metal enrichment event across northern Yukon (Canada) , 2020 .

[44]  Jennifer A. Thompson,et al.  Recent advances in the application of mineral chemistry to exploration for porphyry copper–gold–molybdenum deposits: detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration , 2020, Geochemistry: Exploration, Environment, Analysis.

[45]  S. Salvi,et al.  Tracking Cobalt, REE and Gold from a Porphyry-Type Deposit by LA-ICP-MS: A Geological Approach towards Metal-Selective Mining in Tailings , 2020, Minerals.

[46]  L. Corriveau,et al.  Geochemistry of hydrothermal tourmaline from IOCG occurrences in the Great Bear magmatic zone: Implications for fluid source(s) and fluid composition evolution , 2020 .

[47]  D. Lebel Geological Survey of Canada 8.0: mapping the journey towards predictive geoscience , 2019, Special Publications.

[48]  K. Czarnota,et al.  Global distribution of sediment-hosted metals controlled by craton edge stability , 2019, Nature Geoscience.

[49]  W. Bleeker,et al.  Structural-stratigraphic setting and U-Pb geochronology of Ni-Cu-Co-PGE ore environments in the central Cape Smith Belt, Circum-Superior Belt , 2020 .

[50]  International geoscience collaboration to support critical mineral discovery , 2020, Fact Sheet.

[51]  J. Goutier,et al.  Overview of Ni-Cu-(PGE), Cr-(PGE), and Fe-Ti-V magmatic mineralization in the Superior Province: insights on metallotects and metal endowment , 2020 .

[52]  V. Tschirhart,et al.  Targeted Geoscience Initiative 5: integrated multidisciplinary studies of unconformity-related uranium deposits from the Patterson Lake corridor, northern Saskatchewan , 2020 .

[53]  W. Bleeker,et al.  Targeted Geoscience Initiative 5: Advances in the understanding of Canadian Ni-Cu-PGE and Cr ore systems - Examples from the Midcontinent Rift, the Circum-Superior Belt, the Archean Superior Province, and Cordilleran Alaskan-type intrusions , 2020 .

[54]  M. Houlé,et al.  Variations in the textural facies of sulphide minerals in the Eagle's Nest Ni-Cu-(PGE) deposit, McFaulds Lake greenstone belt, Superior Province, Ontario: insights from microbeam scanning energy-dispersive X-ray fluorescence spectrometry , 2020 .

[55]  W. Bleeker,et al.  Timing and controls on Ni-Cu-PGE mineralization within the Crystal Lake Intrusion, 1.1 Ga Midcontinent Rift , 2020 .

[56]  A. Sappin,et al.  The composition of magnetite in Archean mafic-ultramafic intrusions within the Superior Province , 2020 .

[57]  R. Daigneault,et al.  The B26 Cu-Zn-Ag-Au project, Brouillan volcanic complex, Abitibi greenstone belt, part 2: hydrothermal alteration and mineralization , 2020 .

[58]  G. Layne,et al.  Interrogating the composition and genesis of argillite-hosted pyrite nodules at the LaRonde Penna gold-rich volcanogenic massive sulphide deposit, Abitibi, Quebec: insights into metallogenic implications , 2020 .

[59]  P. Hollings,et al.  THE MIDCONTINENT RIFT AND ITS MINERAL SYSTEMS: OVERVIEW AND TEMPORAL CONSTRAINTS OF NI-CU-PGE MINERALIZED INTRUSIONS , 2020 .

[60]  B. Kjarsgaard,et al.  Paleoproterozoic Iron Oxide Apatite (IOA) and Iron Oxide-Copper-Gold (IOCG) mineralization in the East Arm Basin, Northwest Territories, Canada , 2020 .

[61]  R. Montsion,et al.  Knowledge-driven mineral prospectivity modelling in areas with glacial overburden: Porphyry Cu exploration in Quesnellia, British Columbia, Canada , 2019, Applied Earth Science.

[62]  C. Wade,et al.  Heterogeneity of the sub-continental lithospheric mantle and ‘non-juvenile’ mantle additions to a Proterozoic silicic large igneous province , 2019, Lithos.

[63]  G. Corder,et al.  Re-Thinking Mining Waste through an Integrative Approach Led by Circular Economy Aspirations , 2019, Minerals.

[64]  S. Jackson,et al.  Platinum, Pd, Mo, Au and Re deportment in hyper-enriched black shale Ni-Zn-Mo-PGE mineralization, Peel River, Yukon, Canada , 2019, Ore Geology Reviews.

[65]  L. Corriveau,et al.  The Southern Breccia Metasomatic Uranium System of the Great Bear Magmatic Zone, Canada , 2019, Ore Deposits.

[66]  R. Paulen,et al.  Rare metal indicator minerals in bedrock and till at the Strange Lake peralkaline complex, Quebec and Labrador, Canada , 2019, Canadian Journal of Earth Sciences.

[67]  B. Walter,et al.  A Workflow to Define, Map and Name A Carbonatite- or Alkaline Igneous-Associated REE-HFSE Mineral System: A Case Study from SW Germany , 2019, Minerals.

[68]  K. Wheatley,et al.  Quantifying fertile alteration in the Patterson Lake corridor, Saskatchewan, through visible-near infrared-shortwave infrared spectroscopy , 2019 .

[69]  George J. Simandl,et al.  Carbonatites: Related ore deposits, resources, footprint, and exploration methods , 2018, Applied Earth Science.

[70]  P. Ledru,et al.  A SHALLOW-BURIAL MINERALIZATION MODEL FOR THE UNCONFORMITY-RELATED URANIUM DEPOSITS IN THE ATHABASCA BASIN , 2018, Economic Geology.

[71]  G. Simandl,et al.  Economic Geology Models 2. Tantalum and Niobium: Deposits, Resources, Exploration Methods and Market – A Primer for Geoscientists , 2018, Geoscience Canada.

[72]  D. Harlov,et al.  Characterization of Fluorapatite Within Iron Oxide Alkali-calcic Alteration Systems of the Great Bear Magmatic Zone: a Potential Metasomatic Process Record , 2018 .

[73]  R. Berman,et al.  Bedrock geology, central Rae Craton and eastern Queen Maud Block, western Churchill Province, Nunavut , 2018 .

[74]  D. Sangster Toward an integrated genetic model for vent-distal SEDEX deposits , 2018, Mineralium Deposita.

[75]  G. Mudd,et al.  The world's by-product and critical metal resources part III: A global assessment of indium , 2017 .

[76]  R. Large,et al.  Secular distribution of highly metalliferous black shales corresponds with peaks in past atmosphere oxygenation , 2017, Mineralium Deposita.

[77]  T. McCuaig,et al.  The mineral systems concept: The key to exploration targeting , 2017 .

[78]  D. Huston,et al.  Critical commodities in Australia An assessment of extraction potential from ores , 2017 .

[79]  M. Parkhill,et al.  Indicator mineral and till geochemical signatures of the Mount Pleasant W-Mo-Bi and Sn-Zn-In deposits, New Brunswick, Canada , 2017 .

[80]  Gavin Mark Mudd,et al.  The world's lead-zinc mineral resources: Scarcity, data, issues and opportunities , 2017 .

[81]  M. Gadd,et al.  The world-class Howard’s Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part II: the roles of thermochemical and bacterial sulfate reduction in metal fixation , 2017, Mineralium Deposita.

[82]  R. Enkin,et al.  Metasomatic Alteration Control of Petrophysical Properties in the Great Bear Magmatic Zone (Northwest Territories, Canada) , 2016 .

[83]  R. Enkin,et al.  Geophysical Signature of the NICO Au-Co-Bi-Cu Deposit and Its Iron Oxide-Alkali Alteration System, Northwest Territories, Canada , 2016 .

[84]  L. Corriveau,et al.  Alteration Facies Linkages Among Iron Oxide Copper-Gold, Iron Oxide-Apatite, and Affiliated Deposits in the Great Bear Magmatic Zone, Northwest Territories, Canada. , 2016 .

[85]  B. Ward,et al.  Till geochemistry and mineralogy: vectoring towards Cu porphyry deposits in British Columbia, Canada , 2016, Geochemistry: Exploration, Environment, Analysis.

[86]  V. Lisitsin,et al.  Mineral system analysis: Quo vadis , 2016 .

[87]  A. Cruden,et al.  The mineral system approach applied to magmatic Ni-Cu-PGE sulphide deposits , 2016 .

[88]  J. Dostal Rare Metal Deposits Associated with Alkaline/Peralkaline Igneous Rocks , 2016 .

[89]  J. Harris,et al.  Data- and knowledge-driven mineral prospectivity maps for Canada's North , 2015 .

[90]  H. Dill Pegmatites and aplites: Their genetic and applied ore geology , 2015 .

[91]  Olivier Bolle,et al.  Fe–Ti–V–P ore deposits associated with Proterozoic massif-type anorthosites and related rocks , 2015 .

[92]  G. Beaudoin,et al.  Rare earth elements in Québec, Canada: Main deposit types and their economic potential , 2015 .

[93]  E. Potter,et al.  TGI-4 unconformity-related uranium deposits synthesis: tools to aid deep exploration and refine the genetic model , 2015 .

[94]  G. Beaudoin,et al.  Trace elements in Fe-oxide minerals from fertile and barren igneous complexes: investigating their use as a vectoring tool for Ni-Cu-PGE sulphide mineralization , 2015 .

[95]  H. Salomon-de-Friedberg,et al.  TACKLING IMPURITIES IN COPPER CONCENTRATES , 2015 .

[96]  M. Mihalynuk,et al.  Tectonic Controls on Early Mesozoic Paired Alkaline Porphyry Deposit Belts (Cu-Au ± Ag-Pt-Pd-Mo) Within the Canadian Cordillera , 2014 .

[97]  K. Ansdell,et al.  Regional Setting, Geology, and Paragenesis of the Centennial Unconformity-Related Uranium Deposit, Athabasca Basin, Saskatchewan, Canada , 2014 .

[98]  P. Spry,et al.  Metamorphosed Hydrothermal Ore Deposits , 2014 .

[99]  G. Mudd,et al.  A Detailed Assessment of Global Nickel Resource Trends and Endowments , 2013 .

[100]  R. Enkin,et al.  The application of rapid potential field methods for the targeting of IOCG mineralisation based on physical property data, Great Bear magmatic zone, Canada , 2013 .

[101]  F. Agterberg,et al.  Integration of Geological Datasets for Gold Exploration in Nova Scotia , 2013 .

[102]  S. Jowitt,et al.  Shale-hosted Ni–(Cu–PGE) mineralisation: a global overview , 2011 .

[103]  G. Beaudoin,et al.  An orientation study of the heavy mineral signature of the NICO Co-Au-Bi deposit, Great Bear magmatic zone, NW Territories, Canada , 2011 .

[104]  Mark J. Mihalasky,et al.  Porphyry copper assessment of British Columbia and Yukon Territory, Canada: Chapter C in Global mineral resource assessment , 2011 .

[105]  T. McCuaig,et al.  Translating the mineral systems approach into an effective exploration targeting system , 2010 .

[106]  J. Duke Government geoscience to support mineral exploration: public policy rationale and impact , 2010 .

[107]  D. Thomas,et al.  Unconformity-associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta , 2007 .

[108]  P. Černý,et al.  THE CLASSIFICATION OF GRANITIC PEGMATITES REVISITED , 2005 .

[109]  P. Hannigan,et al.  MISSISSIPPI VALLEY-TYPE LEAD-ZINC DEPOSITS (MVT) , 2005 .

[110]  S. Barnes,et al.  Platinum Group Element, Chromium, and Vanadium Deposits in Mafic and Ultramafic Rocks , 2005 .

[111]  A. Galley,et al.  Volcanogenic Massive Sulfide Deposits , 2005 .

[112]  M. Barton,et al.  Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin , 2005 .

[113]  A. Cayer,et al.  The Kwyjibo Cu-REE-U-Au-Mo-F Property, Quebec: A Mesoproterozoic Polymetallic Iron Oxide Deposit in the Northeastern Grenville Province , 2004 .

[114]  D. Pană,et al.  SHRIMP U-Pb ages of granitoid basement rocks of the southwestern part of the Athabasca Basin, Saskatchewan and Alberta , 2003 .

[115]  C. Hart,et al.  Porphyry deposits of the Canadian Cordillera , 1996 .

[116]  G. Bonham-Carter Geographic Information Systems for Geoscientists , 1996 .

[117]  O. Eckstrand,et al.  Geology of Canadian Mineral Deposit Types , 1995 .

[118]  L. Corriveau,et al.  Coexisting K-rich alkaline and shoshonitic magmatism of arc affinities in the Proterozoic: a reassessment of syenitic stocks in the southwestern Grenville Province , 1993 .

[119]  J. S. Kane The USGS reference sample Devonian Ohio Shale SDO-1 , 1993 .

[120]  F. Agterberg Combining indicator patterns in weights of evidence modeling for resource evaluation , 1992 .

[121]  D. Paktunc,et al.  Sedimentary nickel, zinc, and platinum-group-element mineralization in Devonian black shales at the Nick Property, Yukon, Canada; a new deposit type , 1992 .

[122]  R. Sibson Conditions for fault-valve behaviour , 1990, Geological Society, London, Special Publications.

[123]  T. Sibbald,et al.  On the genesis of Rabbit Lake and other unconformity-type uranium deposits in northern Saskatchewan, Canada , 1978 .