Dissolution and precipitation of copper-rich phases during heating and cooling of precipitation-hardening steel X5CrNiCuNb16-4 (17-4 PH)

[1]  H. Leitner,et al.  Precipitation reactions in a Cu-Ni-Al medium carbon alloyed dual hardening steel , 2020 .

[2]  C. Schick,et al.  Review of the Quench Sensitivity of Aluminium Alloys: Analysis of the Kinetics and Nature of Quench-Induced Precipitation , 2019, Materials.

[3]  H. Leitner,et al.  Early Stages of Precipitate Formation in a Dual Hardening Steel , 2019, HTM Journal of Heat Treatment and Materials.

[4]  Xiaowei Zuo,et al.  Co-precipitation kinetics, microstructural evolution and interfacial segregation in multicomponent nano-precipitated steels , 2019, Materials Characterization.

[5]  O. Kessler,et al.  Quantitative high temperature calorimetry on precipitation in steel and nickel alloys , 2019, Thermochimica Acta.

[6]  M. Gebauer,et al.  In-Situ Phase Transition Analysis of Conventional and Laser Beam Melted AlSi10Mg and X5CrNiCuNb16-4 Alloys , 2018, HTM Journal of Heat Treatment and Materials.

[7]  Z. Y. Li,et al.  Evolution of crystal structure of Cu precipitates in a low carbon steel , 2017 .

[8]  A. Deschamps,et al.  Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment , 2016 .

[9]  G. Totten,et al.  Heat Treatment of Precipitation-Hardening Stainless Steels Alloyed With Niobium , 2015 .

[10]  M. Reich,et al.  Kalorimetrische und dilatometrische Analyse des Anlassverhaltens in der Wärmeeinflusszone von Schweißnähten des Stahls T24 , 2013 .

[11]  K. Knight,et al.  A comparison of dilatometry and in-situ neutron diffraction in tracking bulk phase transformations in a martensitic stainless steel , 2013 .

[12]  R. Kapoor,et al.  On the α′ to γ transformation in maraging (grade 350), PH 13-8 Mo and 17-4 PH steels , 2004 .

[13]  R. Kapoor,et al.  A dilatometric study of the continuous heating transformations in 18wt.% Ni maraging steel of grade 350 , 2003 .

[14]  J. Yang,et al.  Aging reactions in a 17-4 PH stainless steel , 2002 .

[15]  M. Sugiyama,et al.  Precipitation and Phase Transformation of Copper Particles in Low Alloy Ferritic and Martensitic Steels , 1999 .

[16]  Y. Katayama,et al.  Microstructural evolution in a 17-4 PH stainless steel after aging at 400 °C , 1999 .

[17]  G. Smith,et al.  High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe , 1994 .

[18]  G. Smith,et al.  Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe—Cu and Fe—Cu—Ni , 1991 .

[19]  R. Krishnan,et al.  Effects of aging on the microstructure of 17-4 PH stainless steel , 1988 .

[20]  A. Ardell,et al.  Precipitation hardening , 1985 .

[21]  P. Brezina,et al.  Wärmebehandlung, Gefüge und Eigenschaften des korrosionsträgen martensitaushärtbaren Stahles X 5 CrNiMoCuNb 14 5 (14-5 PH) , 1978, HTM Journal of Heat Treatment and Materials.

[22]  D. Kalish,et al.  The strength, fracture toughness, and low cycle fatigue behavior of 17-4 PH stainless steel , 1974, Metallurgical and Materials Transactions B.

[23]  K. Antony Aging Reactions in Precipitation Hardenable Stainless Steel , 1963 .