Dissolution and precipitation of copper-rich phases during heating and cooling of precipitation-hardening steel X5CrNiCuNb16-4 (17-4 PH)
暂无分享,去创建一个
[1] H. Leitner,et al. Precipitation reactions in a Cu-Ni-Al medium carbon alloyed dual hardening steel , 2020 .
[2] C. Schick,et al. Review of the Quench Sensitivity of Aluminium Alloys: Analysis of the Kinetics and Nature of Quench-Induced Precipitation , 2019, Materials.
[3] H. Leitner,et al. Early Stages of Precipitate Formation in a Dual Hardening Steel , 2019, HTM Journal of Heat Treatment and Materials.
[4] Xiaowei Zuo,et al. Co-precipitation kinetics, microstructural evolution and interfacial segregation in multicomponent nano-precipitated steels , 2019, Materials Characterization.
[5] O. Kessler,et al. Quantitative high temperature calorimetry on precipitation in steel and nickel alloys , 2019, Thermochimica Acta.
[6] M. Gebauer,et al. In-Situ Phase Transition Analysis of Conventional and Laser Beam Melted AlSi10Mg and X5CrNiCuNb16-4 Alloys , 2018, HTM Journal of Heat Treatment and Materials.
[7] Z. Y. Li,et al. Evolution of crystal structure of Cu precipitates in a low carbon steel , 2017 .
[8] A. Deschamps,et al. Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment , 2016 .
[9] G. Totten,et al. Heat Treatment of Precipitation-Hardening Stainless Steels Alloyed With Niobium , 2015 .
[10] M. Reich,et al. Kalorimetrische und dilatometrische Analyse des Anlassverhaltens in der Wärmeeinflusszone von Schweißnähten des Stahls T24 , 2013 .
[11] K. Knight,et al. A comparison of dilatometry and in-situ neutron diffraction in tracking bulk phase transformations in a martensitic stainless steel , 2013 .
[12] R. Kapoor,et al. On the α′ to γ transformation in maraging (grade 350), PH 13-8 Mo and 17-4 PH steels , 2004 .
[13] R. Kapoor,et al. A dilatometric study of the continuous heating transformations in 18wt.% Ni maraging steel of grade 350 , 2003 .
[14] J. Yang,et al. Aging reactions in a 17-4 PH stainless steel , 2002 .
[15] M. Sugiyama,et al. Precipitation and Phase Transformation of Copper Particles in Low Alloy Ferritic and Martensitic Steels , 1999 .
[16] Y. Katayama,et al. Microstructural evolution in a 17-4 PH stainless steel after aging at 400 °C , 1999 .
[17] G. Smith,et al. High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe , 1994 .
[18] G. Smith,et al. Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe—Cu and Fe—Cu—Ni , 1991 .
[19] R. Krishnan,et al. Effects of aging on the microstructure of 17-4 PH stainless steel , 1988 .
[20] A. Ardell,et al. Precipitation hardening , 1985 .
[21] P. Brezina,et al. Wärmebehandlung, Gefüge und Eigenschaften des korrosionsträgen martensitaushärtbaren Stahles X 5 CrNiMoCuNb 14 5 (14-5 PH) , 1978, HTM Journal of Heat Treatment and Materials.
[22] D. Kalish,et al. The strength, fracture toughness, and low cycle fatigue behavior of 17-4 PH stainless steel , 1974, Metallurgical and Materials Transactions B.
[23] K. Antony. Aging Reactions in Precipitation Hardenable Stainless Steel , 1963 .