On a Geometric Model of Bodies with “Complex” Configuration and Some Movements
暂无分享,去创建一个
Paolo Emilio Ricci | Diego Caratelli | Johan Gielis | Maria Transirico | J. Gielis | P. Ricci | D. Caratelli | Ilia Tavkhelidze | Mamanti Rogava | I. Tavkhelidze | M. Rogava | M. Transirico
[1] J. Gielis,et al. About “bulky” links generated by generalized Möbius–listing bodies $ GML_2^n $ , 2013 .
[2] J. Gielis,et al. FOURIER-LIKE SOLUTION OF THE DIRICHLET PROBLEM FOR THE LAPLACE EQUATION IN K-TYPE GIELIS DOMAINS , 2011 .
[3] P. Natalini,et al. The Robin problem for the Helmholtz equation in a starlike planar domain , 2011 .
[4] Ricardo Chacón,et al. Modeling Natural Shapes with a Simple Nonlinear Algorithm , 2006, Int. J. Bifurc. Chaos.
[5] Yohan D. Fougerolle,et al. Universal Natural Shapes: From Unifying Shape Description to Simple Methods for Shape Analysis and Boundary Value Problems , 2012, PloS one.
[6] A. Gray,et al. Modern Differential Geometry of Curves and Surfaces with Mathematica, Third Edition (Studies in Advanced Mathematics) , 2006 .
[7] Paolo Emilio Ricci,et al. The Neumann problem for the Helmholtz equation in a starlike planar domain , 2010, Appl. Math. Comput..
[8] Paolo Emilio Ricci,et al. The Dirichlet problem for the Laplace equation in a starlike domain of a Riemann surface , 2008, Numerical Algorithms.
[9] R. Ho. Algebraic Topology , 2022 .
[10] Paolo Emilio Ricci,et al. The Robin problem for the Laplace equation in a three-dimensional starlike domain , 2011, Appl. Math. Comput..